1
|
Chen L, Ren Y, Yuan Y, Xu J, Wen B, Xie S, Zhu J, Li W, Gong X, Shen W. Multi-parametric MRI-based machine learning model for prediction of pathological grade of renal injury in a rat kidney cold ischemia-reperfusion injury model. BMC Med Imaging 2024; 24:188. [PMID: 39060984 PMCID: PMC11282691 DOI: 10.1186/s12880-024-01320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Renal cold ischemia-reperfusion injury (CIRI), a pathological process during kidney transplantation, may result in delayed graft function and negatively impact graft survival and function. There is a lack of an accurate and non-invasive tool for evaluating the degree of CIRI. Multi-parametric MRI has been widely used to detect and evaluate kidney injury. The machine learning algorithms introduced the opportunity to combine biomarkers from different MRI metrics into a single classifier. OBJECTIVE To evaluate the performance of multi-parametric magnetic resonance imaging for grading renal injury in a rat model of renal cold ischemia-reperfusion injury using a machine learning approach. METHODS Eighty male SD rats were selected to establish a renal cold ischemia -reperfusion model, and all performed multiparametric MRI scans (DWI, IVIM, DKI, BOLD, T1mapping and ASL), followed by pathological analysis. A total of 25 parameters of renal cortex and medulla were analyzed as features. The pathology scores were divided into 3 groups using K-means clustering method. Lasso regression was applied for the initial selecting of features. The optimal features and the best techniques for pathological grading were obtained. Multiple classifiers were used to construct models to evaluate the predictive value for pathology grading. RESULTS All rats were categorized into mild, moderate, and severe injury group according the pathologic scores. The 8 features that correlated better with the pathologic classification were medullary and cortical Dp, cortical T2*, cortical Fp, medullary T2*, ∆T1, cortical RBF, medullary T1. The accuracy(0.83, 0.850, 0.81, respectively) and AUC (0.95, 0.93, 0.90, respectively) for pathologic classification of the logistic regression, SVM, and RF are significantly higher than other classifiers. For the logistic model and combining logistic, RF and SVM model of different techniques for pathology grading, the stable and perform are both well. Based on logistic regression, IVIM has the highest AUC (0.93) for pathological grading, followed by BOLD(0.90). CONCLUSION The multi-parametric MRI-based machine learning model could be valuable for noninvasive assessment of the degree of renal injury.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Yan Ren
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Yizhong Yuan
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jipan Xu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Baole Wen
- College of Medicine, Nankai University, Tianjin, 300350, China
| | - Shuangshuang Xie
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Jinxia Zhu
- MR Collaborations, Siemens Healthcare China, Beijing, 100102, China
| | - Wenshuo Li
- College of Computer Science, Nankai University, Tianjin, 300350, China
| | - Xiaoli Gong
- College of Computer Science, Nankai University, Tianjin, 300350, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China.
| |
Collapse
|
2
|
Nagawa K, Hara Y, Inoue K, Yamagishi Y, Koyama M, Shimizu H, Matsuura K, Osawa I, Inoue T, Okada H, Kobayashi N, Kozawa E. Three-dimensional convolutional neural network-based classification of chronic kidney disease severity using kidney MRI. Sci Rep 2024; 14:15775. [PMID: 38982238 PMCID: PMC11233566 DOI: 10.1038/s41598-024-66814-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/04/2024] [Indexed: 07/11/2024] Open
Abstract
A three-dimensional convolutional neural network model was developed to classify the severity of chronic kidney disease (CKD) using magnetic resonance imaging (MRI) Dixon-based T1-weighted in-phase (IP)/opposed-phase (OP)/water-only (WO) imaging. Seventy-three patients with severe renal dysfunction (estimated glomerular filtration rate [eGFR] < 30 mL/min/1.73 m2, CKD stage G4-5); 172 with moderate renal dysfunction (30 ≤ eGFR < 60 mL/min/1.73 m2, CKD stage G3a/b); and 76 with mild renal dysfunction (eGFR ≥ 60 mL/min/1.73 m2, CKD stage G1-2) participated in this study. The model was applied to the right, left, and both kidneys, as well as to each imaging method (T1-weighted IP/OP/WO images). The best performance was obtained when using bilateral kidneys and IP images, with an accuracy of 0.862 ± 0.036. The overall accuracy was better for the bilateral kidney models than for the unilateral kidney models. Our deep learning approach using kidney MRI can be applied to classify patients with CKD based on the severity of kidney disease.
Collapse
Affiliation(s)
- Keita Nagawa
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Yuki Hara
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Kaiji Inoue
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan.
| | - Yosuke Yamagishi
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Masahiro Koyama
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Hirokazu Shimizu
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Koichiro Matsuura
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Iichiro Osawa
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Hirokazu Okada
- Department of Nephrology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Naoki Kobayashi
- School of Biomedical Engineering, Faculty of Health and Medical Care, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Eito Kozawa
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| |
Collapse
|
3
|
Chen J, Wen Z, Yang X, Jia J, Zhang X, Pian L, Zhao P. Ultrasound-Based Radiomics for the Classification of Henoch-Schönlein Purpura Nephritis in Children. ULTRASONIC IMAGING 2024; 46:110-120. [PMID: 38140769 DOI: 10.1177/01617346231220000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Henoch-Schönlein purpura nephritis (HSPN) is one of the most common kidney diseases in children. The current diagnosis and classification of HSPN depend on pathological biopsy, which is seriously limited by its invasive and high-risk nature. The aim of the study was to explore the potential of radiomics model for evaluating the histopathological classification of HSPN based on the ultrasound (US) images. A total of 440 patients with Henoch-Schönlein purpura nephritis proved by biopsy were analyzed retrospectively. They were grouped according to two histopathological categories: those without glomerular crescent formation (ISKDC grades I-II) and those with glomerular crescent formation (ISKDC grades III-V). The patients were randomly assigned to either a training cohort (n = 308) or a validation cohort (n = 132) with a ratio of 7:3. The sonologist manually drew the regions of interest (ROI) on the ultrasound images of the right kidney including the cortex and medulla. Then, the ultrasound radiomics features were extracted using the Pyradiomics package. The dimensions of radiomics features were reduced by Spearman correlation coefficients and least absolute shrinkage and selection operator (LASSO) method. Finally, three radiomics models using k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established, respectively. The predictive performance of such classifiers was assessed with receiver operating characteristic (ROC) curve. 105 radiomics features were extracted from derived US images of each patient and 14 features were ultimately selected for the machine learning analysis. Three machine learning models including k-nearest neighbor (KNN), logistic regression (LR), and support vector machine (SVM) were established for HSPN classification. Of the three classifiers, the SVM classifier performed the best in the validation cohort [area under the curve (AUC) =0.870 (95% CI, 0.795-0.944), sensitivity = 0.706, specificity = 0.950]. The US-based radiomics had good predictive value for HSPN classification, which can be served as a noninvasive tool to evaluate the severity of renal pathology and crescentic formation in children with HSPN.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ultrasound Medical, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Ultrasound Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zeying Wen
- Department of Radiology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaoqing Yang
- Department of Pathology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jie Jia
- Department of Ultrasound Medical, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaodong Zhang
- Department of Ultrasound Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Linping Pian
- Department of Ultrasound Medical, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ping Zhao
- Department of Ultrasound Medical, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Inoue K, Hara Y, Nagawa K, Koyama M, Shimizu H, Matsuura K, Takahashi M, Osawa I, Inoue T, Okada H, Ishikawa M, Kobayashi N, Kozawa E. The utility of automatic segmentation of kidney MRI in chronic kidney disease using a 3D convolutional neural network. Sci Rep 2023; 13:17361. [PMID: 37833438 PMCID: PMC10575938 DOI: 10.1038/s41598-023-44539-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
We developed a 3D convolutional neural network (CNN)-based automatic kidney segmentation method for patients with chronic kidney disease (CKD) using MRI Dixon-based T1-weighted in-phase (IP)/opposed-phase (OP)/water-only (WO) images. The dataset comprised 100 participants with renal dysfunction (RD; eGFR < 45 mL/min/1.73 m2) and 70 without (non-RD; eGFR ≥ 45 mL/min/1.73 m2). The model was applied to the right, left, and both kidneys; it was first evaluated on the non-RD group data and subsequently on the combined data of the RD and non-RD groups. For bilateral kidney segmentation of the non-RD group, the best performance was obtained when using IP image, with a Dice score of 0.902 ± 0.034, average surface distance of 1.46 ± 0.75 mm, and a difference of - 27 ± 21 mL between ground-truth and automatically computed volume. Slightly worse results were obtained for the combined data of the RD and non-RD groups and for unilateral kidney segmentation, particularly when segmenting the right kidney from the OP images. Our 3D CNN-assisted automatic segmentation tools can be utilized in future studies on total kidney volume measurements and various image analyses of a large number of patients with CKD.
Collapse
Affiliation(s)
- Kaiji Inoue
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Yuki Hara
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Keita Nagawa
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan.
| | - Masahiro Koyama
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Hirokazu Shimizu
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Koichiro Matsuura
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Masao Takahashi
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Iichiro Osawa
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Hirokazu Okada
- Department of Nephrology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Masahiro Ishikawa
- Department of Electronic Engineering and Computer Science, Faculty of Engineering, Kindai University Hiroshima Campus, 1 Takaya Umenobe, Higashi-Hiroshima City, Hiroshima, Japan
| | - Naoki Kobayashi
- School of Biomedical Engineering, Faculty of Health and Medical Care, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Eito Kozawa
- Department of Radiology, Saitama Medical University, 38 Morohongou, Moroyama-machi, Iruma-gun, Saitama, Japan
| |
Collapse
|