1
|
Alqahtani SM, Al-Kuraishy HM, Al Gareeb AI, Albuhadily AK, Alexiou A, Papadakis M, Hemeda LR, Faheem SA, El-Saber Batiha G. Unlocking Alzheimer's Disease: The Role of BDNF Signaling in Neuropathology and Treatment. Neuromolecular Med 2025; 27:36. [PMID: 40380033 DOI: 10.1007/s12017-025-08857-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/20/2025] [Indexed: 05/19/2025]
Abstract
Alzheimer's disease (AD) remains one of the most debilitating neurodegenerative disorders, with its pathological hallmark being progressive cognitive decline and memory loss. Recent research has illuminated the crucial role of the brain-derived neurotrophic factor (BDNF) in the central nervous system (CNS), highlighting its impact on neurogenesis, synaptic plasticity, and neuronal survival. Dysregulation of the BDNF signaling axis, particularly the imbalance between its precursor form and mature BDNF, is strongly implicated in the pathophysiology of AD. This review explores the molecular mechanisms through which BDNF modulates AD neuropathology and presents novel therapeutic strategies to activate BDNF signaling. We focus on the potential of BDNF activators, such as TrkB agonists and mimetic molecules, to restore synaptic function and ameliorate cognitive deficits in AD. Furthermore, we examine the challenges in translating these findings into clinical practice, including issues with blood-brain barrier penetration and the need for precise receptor targeting. The review emphasizes the therapeutic potential of repurposed drugs, including statins and metformin, in enhancing BDNF signaling and offers new insights into the future of AD treatment. Ultimately, this work provides a compelling argument for BDNF-based therapies as a promising avenue for mitigating the cognitive decline associated with Alzheimer's disease, signaling a hopeful direction for future research and clinical trials.
Collapse
Affiliation(s)
- Saad Misfer Alqahtani
- Department of Pathology, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I Al Gareeb
- Department of Clinical Pharmacology and Medicine, Jabir Ibn Hayyan Medical University, Al-Ameer Qu./Najaf - Iraq Po. Box (13), Kufa, Iraq
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, 11741, Athens, Greece
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Loah R Hemeda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Safaa A Faheem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, 11829, Cairo, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Cheng G, Zhang M, Zhang J, Teng S, Wang Z, Cui T, Xiao S. E se tea aqueous-ethanol extract ameliorates D-galactose induced oxidative stress and inflammation via the Nrf2 signal pathway. Food Res Int 2025; 209:116323. [PMID: 40253213 DOI: 10.1016/j.foodres.2025.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/01/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
E Se tea is a traditional herbal tea produced by traditional green tea processing technique from the tender leaves of Malus toringoides (Rehd.) Hughes with anti-inflammatory and antioxidant activities. This study investigated the inhibitory effect of the aqueous-ethanol extract of E Se tea against oxidative stress induced damage on D-galactose (D-gal) induced mice. UPLC-ESI-HRMS/MS analysis resulted in the identification of eleven compounds inclusive of 1 isoflavone (9), 1 phenolic acid (2), 2 flavanols (1 and 10), 3 dihydrochalcones (5, 8, and 11), and 4 flavones (3, 4, 6, and 7). The quantitative analysis demonstrated that phlorizin (8) had the highest content, followed by phloretin (11) and kaempferol-3-O-glucoside (7). The aqueous-ethanol extract of E Se tea significantly increased the total antioxidant capacity (T-AOC) in serum, reduced MDA level, and enhanced SOD activity and GSH level in brain and liver tissues. In addition, this extract also remarkably decreased the levels of inflammatory cytokines (IL-6 and IL-1β) in serum, and inhibited the AchE activity in brain. The possible mechanism might be related to the upregulation of Nrf2, HO-1, and NQO1 the expressions by using western blotting experiment. The pearson correlation analysis revealed that phloretin was the possible antioxidant and anti-inflammatory compound, and coumaroyl quinic acid was the active compound on AChE enzyme. These findings indicated that E Se tea extract had the protective effect on D-gal induced oxidative stress damage in mice via activating the Nrf2 signal pathway.
Collapse
Affiliation(s)
- Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Meng Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Jinke Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Sifan Teng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China
| | - Tianqi Cui
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China.
| | - Shanshan Xiao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; Yunnan International Joint Laboratory of Green Food Processing, Kunming 650500, China.
| |
Collapse
|
3
|
Kruczkowska W, Gałęziewska J, Buczek P, Płuciennik E, Kciuk M, Śliwińska A. Overview of Metformin and Neurodegeneration: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:486. [PMID: 40283923 PMCID: PMC12030719 DOI: 10.3390/ph18040486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
This comprehensive review examines the therapeutic potential of metformin, a well-established diabetes medication, in treating neurodegenerative disorders. Originally used as a first-line treatment for type 2 diabetes, recent studies have begun investigating metformin's effects beyond metabolic disorders, particularly its neuroprotective capabilities against conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis. Key findings demonstrate that metformin's neuroprotective effects operate through multiple pathways: AMPK activation enhancing cellular energy metabolism and autophagy; upregulation of antioxidant defenses; suppression of inflammation; inhibition of protein aggregation; and improvement of mitochondrial function. These mechanisms collectively address common pathological features in neurodegeneration and neuroinflammation, including oxidative stress, protein accumulation, and mitochondrial dysfunction. Clinical and preclinical evidence supporting metformin's association with improved cognitive performance, reduced risk of dementia, and modulation of pathological hallmarks of neurodegenerative diseases is critically evaluated. While metformin shows promise as a therapeutic agent, this review emphasizes the need for further investigation to fully understand its mechanisms and optimal therapeutic applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Julia Gałęziewska
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Paulina Buczek
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (W.K.); (J.G.); (P.B.); (E.P.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| |
Collapse
|
4
|
Alves SS, Rossi L, de Oliveira JAC, Servilha-Menezes G, Grigorio-de-Sant'Ana M, Mazzei RF, Almeida SS, Sebollela A, da Silva Junior RMP, Garcia-Cairasco N. Metformin Improves Spatial Memory and Reduces Seizure Severity in a Rat Model of Epilepsy and Alzheimer's Disease comorbidity via PI3K/Akt Signaling Pathway. Mol Neurobiol 2025:10.1007/s12035-025-04844-2. [PMID: 40126600 DOI: 10.1007/s12035-025-04844-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
Emerging evidence suggests a bidirectional relationship between Alzheimer's disease (AD) and epilepsy. In our previous studies, we identified a partial AD-like phenotype associated with central insulin resistance in the Wistar audiogenic rat (WAR), a genetic model of epilepsy. We also found that intracerebroventricular administration of streptozotocin, a compound used to model diabetes and AD, exacerbates seizure susceptibility. Given the role of insulin signaling in both AD and epilepsy, we hypothesized that metformin (MET), an anti-diabetic drug known for enhancing insulin sensitivity, could be a potential therapeutic agent for both conditions. Our objective was to investigate MET's effects on brain insulin signaling, seizure activity, and AD-like pathology in WARs. Adult male WARs received oral MET (250 mg/kg) for 21 days. Audiogenic seizures were assessed using the Categorized Severity Index and Racine's scale. Spatial memory was tested with the Morris water maze (MWM), followed by Western blot analysis of hippocampal proteins. MET significantly reduced seizure severity and improved MWM performance. Although MET did not affect insulin receptor levels or activation, it increased phosphoinositide 3-kinase (PI3K), activated Akt, and increased glycogen synthase kinase-3α/β (GSK-3α/β) levels. MET also decreased amyloid β precursor protein (AβPP) levels but did not affect Tau phosphorylation. These results suggest that chronic MET treatment alleviates behaviors related to both AD and epilepsy in WARs and modulates insulin signaling independently of insulin receptor activation. Our findings highlight MET's potential as a therapeutic agent for managing comorbid AD and epilepsy, warranting further investigation into its mechanisms of action.
Collapse
Affiliation(s)
- Suélen Santos Alves
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Letícia Rossi
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Jose Antonio Cortes de Oliveira
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel Servilha-Menezes
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Mariana Grigorio-de-Sant'Ana
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Rodrigo Focosi Mazzei
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo (FFCLRP-USP), Ribeirão Preto, Brazil
| | - Sebastião Sousa Almeida
- Department of Psychology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto University of São Paulo (FFCLRP-USP), Ribeirão Preto, Brazil
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | | | - Norberto Garcia-Cairasco
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.
- Department of Physiology, Neurophysiology and Experimental Neuroethology Laboratory, Ribeirão Preto Medical School University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
Cheng YY, Yao Q, Miao Y, Guan W. Metformin as a potential antidepressant: Mechanisms and therapeutic insights in depression. Biochem Pharmacol 2025; 233:116773. [PMID: 39894309 DOI: 10.1016/j.bcp.2025.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Depression is one of the most disabling psychiatric disorders, whose pathophysiology has not been fully understood. Increasing numbers of preclinical studies have highlighted that metformin, as the first-line hypoglycaemic agent, has a potential pleiotropic effect on depression. Moreover, there is emerging evidence that metformin shows antidepressant activity and improves depressive symptoms in rodent models of depression. However, the exact role and underlying mechanism of metformin in depression remain unclear and still need to be investigated. Recent studies suggest that metformin not only improves neuronal damage and structural plasticity in the hippocampus but also enhances the antidepressant effect of antidepressants. Therefore, in this review, we summarize the existing evidence for the use of metformin as a psychopharmaceutical and elaborate on the underlying mechanisms of metformin in mitigating the onset and progression of depression, as well as the associated biochemical signaling pathways and targets involved in the pathogenesis of depression. After reviewing several studies, we conclude that metformin helps reduce depressive symptoms by targeting multiple pathways, including the regulation of neurotransmitters, enhanced neurogenesis, anti-inflammatory effects, and changes in gut microbiota. We aim to gain a deeper understanding of the mechanism of action of metformin and provide new insights into its clinical value in the prevention and therapy of depression.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Department of Pharmacology, Nantong Stomatological Hospital, Nantong 226001 Jiangsu, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001 Jiangsu, China
| | - Yang Miao
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng 224000 Jiangsu, China.
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001 Jiangsu, China.
| |
Collapse
|
6
|
Wu Q, Jia XY, Zhang SH, Wu YZ, Xu LS, Han JG, Yu W, Zhou QH. Metformin activates the PI3K/AKT/BDNF axis to attenuate postoperative cognitive dysfunction. Neuropharmacology 2025; 265:110262. [PMID: 39662703 DOI: 10.1016/j.neuropharm.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a prevalent neurocognitive complication of anesthesia and surgery. Metformin, a widely used antidiabetic drug, has neuroprotective properties and improves cognitive impairment and memory deficits. However, the mechanisms underlying its action in improving cognitive dysfunction after anesthesia and surgery remain unclear. This study aimed to explore the effects of metformin on POCD and the underlying mechanisms at play. We established an in vivo POCD model using isoflurane inhalation anesthesia with exploratory laparotomy. We found that pretreatment with metformin significantly improved cognitive function and anxiety-like behaviors in mice. Additionally, metformin attenuated the impairment of synaptic plasticity induced by POCD and restored levels of synaptic proteins and dendritic density in the hippocampus. Furthermore, metformin attenuated neuroinflammation by downregulating the expression of interleukin (IL)-6, IL-1β, and tumor necrosis factor-α, and reducing neuronal apoptosis. It also activates the PI3K/AKT signaling pathway, resulting in increased expression of brain-derived neurotrophic factor (BDNF). Finally, the PI3K inhibitor, LY294002, reversed the effects of metformin on the levels of PI3K, AKT phosphorylation, and BDNF in vitro cultured HT-22 cells. Additionally, in an in vivo model of POCD, it was observed that cognitive function in mice was significantly suppressed by treatment with the PI3K inhibitor LY294002. These results reveal that metformin may alleviate POCD by modulating the PI3K/AKT/BDNF axis. Our study may provide a novel strategy for preventing and treating POCD with this medication.
Collapse
Affiliation(s)
- Qing Wu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Xiao-Yu Jia
- Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Shi-Hua Zhang
- Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Yun-Zhe Wu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China; Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Long-Sheng Xu
- Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Jun-Gang Han
- Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Wei Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Qing-He Zhou
- Department of Anesthesiology and Pain Medicine, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, Zhejiang, China.
| |
Collapse
|
7
|
Chele D, Sirbu CA, Mitrica M, Toma M, Vasiliu O, Sirbu AM, Authier FJ, Mischianu D, Munteanu AE. Metformin's Effects on Cognitive Function from a Biovariance Perspective: A Narrative Review. Int J Mol Sci 2025; 26:1783. [PMID: 40004246 PMCID: PMC11855408 DOI: 10.3390/ijms26041783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
This study examines the effects of metformin on brain functions focusing on the variability of the results reported in the literature. While some studies suggest that metformin may have neuroprotective effects in diabetic patients, others report an insignificant impact of metformin on cognitive function, or even a negative effect. We propose that this inconsistency may be due to intrinsic cellular-level variability among individuals, which we term "biovariance". Biovariance persists even in demographically homogeneous samples due to complex and stochastic biological processes. Additionally, the complex metabolic actions of metformin, including its influence on neuroenergetics and neuronal survival, may produce different effects depending on individual metabolic characteristics.
Collapse
Affiliation(s)
- Dimitrie Chele
- Department of Neurology, Elias Emergency University Hospital, 011461 Bucharest, Romania;
| | - Carmen-Adella Sirbu
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Marian Mitrica
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
| | - Mihai Toma
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania; (M.T.); (A.E.M.)
| | - Octavian Vasiliu
- Clinical Neurosciences Department, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (M.M.); (O.V.)
- Department of Psychiatry, ‘Dr. Carol Davila’ Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Anca-Maria Sirbu
- National Institute of Medical Expertise and Recovery of Work Capacity, Panduri 22, 050659 Bucharest, Romania
| | - Francois Jerome Authier
- Neuromuscular Reference Center, Henri Mondor University Hospital, Assistance Publique–Hôpitaux de Paris, 94000 Créteil, France
- INSERM U955-Team Relaix, Faculty of Health, Paris Est-Creteil University, 94010 Créteil, France
| | - Dan Mischianu
- Academy of Romanian Scientists, 050045 Bucharest, Romania
- Department No. 3, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Alice Elena Munteanu
- Department of Medical-Surgical and Prophylactical Disciplines, Faculty of Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania; (M.T.); (A.E.M.)
| |
Collapse
|
8
|
Berchtold MW, Villalobo A. Ca 2+/calmodulin signaling in organismal aging and cellular senescence: Impact on human diseases. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167583. [PMID: 39579800 DOI: 10.1016/j.bbadis.2024.167583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Molecular mechanisms of aging processes at the level of organisms and cells are in the focus of a large number of research laboratories. This research culminated in recent breakthroughs, which contributed to the better understanding of the natural aging process and aging associated malfunctions leading to age-related diseases. Ca2+ in connection with its master intracellular sensor protein calmodulin (CaM) regulates a plethora of crucial cellular processes orchestrating a wide range of signaling processes. This review focuses on the involvement of Ca2+/CaM in cellular mechanisms, which are associated with normal aging, as well as playing a role in the development of diseases connected with signaling processes during aging. We specifically highlight processes that involve inactivation of proteins, which take part in Ca2+/CaM regulatory systems by oxygen or nitrogen free radical species, during organismal aging and cellular senescence. As examples of organs where aging processes have recently been investigated, we chose to review the literature on molecular aging processes with involvement of Ca2+/CaM in heart and neuronal diseases, as well as in cancer and metabolic diseases, all deeply affected by aging. In addition, this article focuses on cellular senescence, a mechanism that may contribute to aging processes and therefore has been proposed as a target to interfere with the progression of age-associated diseases.
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen Ø, Denmark.
| | - Antonio Villalobo
- Cancer and Human Molecular Genetics Area, Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain.
| |
Collapse
|
9
|
Moka MK, George M, Sriram DK. Advancing Longevity: Exploring Antiaging Pharmaceuticals in Contemporary Clinical Trials Amid Aging Dynamics. Rejuvenation Res 2024; 27:220-233. [PMID: 39162996 DOI: 10.1089/rej.2024.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Aging is an inevitable biological process that significantly impacts human health, leading to a decline in cellular function and an increase in cellular damage. This study elucidates the burgeoning potential of antiaging pharmaceuticals in mitigating the thriving burden of chronic conditions linked to advancing age. It underscores the pivotal role of these pharmacotherapeutic agents in fostering longevity free from debilitating age-related afflictions, notably cardiovascular disorders, neoplastic processes, and neurodegenerative pathologies. While commendable strides have been made evident in preclinical models, it is crucial to thoroughly investigate their effectiveness and safety in human groups. In addition, ethical concerns about fair access, societal impacts, and careful resource distribution are significant in discussions about developing and using antiaging medications. By approaching the development and utilization of antiaging medications with diligence and foresight, we can strive toward a future where individuals can enjoy extended lifespans free from the debilitating effects of age-related ailments.
Collapse
Affiliation(s)
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, India
| | - D K Sriram
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, India
| |
Collapse
|
10
|
Taheri M, Roghani M, Sedaghat R. Metformin Mitigates Trimethyltin-Induced Cognition Impairment and Hippocampal Neurodegeneration. Cell Mol Neurobiol 2024; 44:70. [PMID: 39441380 PMCID: PMC11499442 DOI: 10.1007/s10571-024-01502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
The neurotoxicant trimethyltin (TMT) triggers cognitive impairment and hippocampal neurodegeneration. TMT is a useful research tool for the study of Alzheimer's disease (AD) pathogenesis and treatment. Although the antidiabetic agent metformin has shown promising neuroprotective effects, however, its precise modes of action in neurodegenerative disorders need to be further elucidated. In this study, we investigated whether metformin can mitigate TMT cognition impairment and hippocampal neurodegeneration. To induce an AD-like phenotype, TMT was injected i.p. (8 mg/kg) and metformin was administered daily p.o. for 3 weeks at 200 mg/kg. Our results showed that metformin administration to the TMT group mitigated learning and memory impairment in Barnes maze, novel object recognition (NOR) task, and Y maze, attenuated hippocampal oxidative, inflammatory, and cell death/pyroptotic factors, and also reversed neurodegeneration-related proteins such as presenilin 1 and p-Tau. Hippocampal level of AMP-activated protein kinase (AMPK) as a key regulator of energy homeostasis was also improved following metformin treatment. Additionally, metformin reduced hippocampal acetylcholinesterase (AChE) activity, glial fibrillary acidic protein (GFAP)-positive reactivity, and prevented the loss of CA1 pyramidal neurons. This study showed that metformin mitigated TMT-induced neurodegeneration and this may pave the way to develop new therapeutics to combat against cognitive deficits under neurotoxic conditions.
Collapse
Affiliation(s)
- Mahdieh Taheri
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| | - Reza Sedaghat
- Department of Pathology, School of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
11
|
Foda AM, Ibrahim SS, Ibrahim SM, Elbaz EM. Pterostilbene Ameliorates Cognitive Impairment in Polycystic Ovary Syndrome Rat Model through Improving Insulin Resistance via the IRS-1/PI3K/Akt/GSK-3β Pathway: A Comparative Study with Metformin. ACS Chem Neurosci 2024; 15:3064-3077. [PMID: 39119909 DOI: 10.1021/acschemneuro.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is an intricate endocrine disorder that targets millions of women globally. Recent research has drawn attention to its association with cognitive impairment and Alzheimer's disease (AD) risk, yet the exact mechanism remains elusive. This study aimed to explore the potential role of PCOS-associated insulin resistance (IR) and inflammation in linking PCOS to AD pathogenesis. It additionally investigated the therapeutic merits of pterostilbene (PTS) in ameliorating PCOS and associated cognitive deficits in comparison to metformin (MET). Rats were divided into five groups; vehicle group, PTS group [30 mg/kg, per os (p.o.) for 13 days], and the remaining three groups received letrozole (1 mg/kg, p.o. for 21 days) to represent the PCOS, PCOS + MET (300 mg/kg, p.o. for 13 days), and PCOS + PTS groups, respectively. Behavioral tests were conducted, along with a histopathological investigation of brains and ovaries. Assessment of serum hormonal profile and hippocampal IRS-1/PI3K/AKT/GSK-3β insulin signaling pathway components were performed. PTS rats exhibited improved insulin sensitivity and hormonal profile, besides enhanced neurobehavioral tests performance and histopathological findings. These effects may be attributed to modulation of the IRS-1/PI3K/AKT/GSK-3β pathway, reducing GSK-3β activity, and mitigating Tau hyperphosphorylation and Aβ accumulation in the brain. Likewise, PTS attenuated nuclear factor kappa B-mediated inflammation and reversed AChE elevation, suggesting multifaceted neuroprotective effects. Comparatively, PTS showed outcomes similar to those of MET in most parameters. The obtained findings validated that dysregulated insulin signaling in PCOS rats detrimentally affects cognitive function, which is halted by PTS, unveiling the potential of PTS as a novel therapy for PCOS and related cognitive deficits.
Collapse
Affiliation(s)
- Aliaa M Foda
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Safinaz S Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sherehan M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 11571, Egypt
| | - Eman M Elbaz
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
12
|
Navakkode S, Kennedy BK. Neural ageing and synaptic plasticity: prioritizing brain health in healthy longevity. Front Aging Neurosci 2024; 16:1428244. [PMID: 39161341 PMCID: PMC11330810 DOI: 10.3389/fnagi.2024.1428244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024] Open
Abstract
Ageing is characterized by a gradual decline in the efficiency of physiological functions and increased vulnerability to diseases. Ageing affects the entire body, including physical, mental, and social well-being, but its impact on the brain and cognition can have a particularly significant effect on an individual's overall quality of life. Therefore, enhancing lifespan and physical health in longevity studies will be incomplete if cognitive ageing is over looked. Promoting successful cognitive ageing encompasses the objectives of mitigating cognitive decline, as well as simultaneously enhancing brain function and cognitive reserve. Studies in both humans and animal models indicate that cognitive decline related to normal ageing and age-associated brain disorders are more likely linked to changes in synaptic connections that form the basis of learning and memory. This activity-dependent synaptic plasticity reorganises the structure and function of neurons not only to adapt to new environments, but also to remain robust and stable over time. Therefore, understanding the neural mechanisms that are responsible for age-related cognitive decline becomes increasingly important. In this review, we explore the multifaceted aspects of healthy brain ageing with emphasis on synaptic plasticity, its adaptive mechanisms and the various factors affecting the decline in cognitive functions during ageing. We will also explore the dynamic brain and neuroplasticity, and the role of lifestyle in shaping neuronal plasticity.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, Centre for Healthy Longevity, National University Health System, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Departments of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Buck Institute for Research on Ageing, Novato, CA, United States
| |
Collapse
|
13
|
Pourfridoni M, Hedayati-Moghadam M, Fathi S, Fathi S, Mirrashidi FS, Askarpour H, Shafieemojaz H, Baghcheghi Y. Beneficial effects of metformin treatment on memory impairment. Mol Biol Rep 2024; 51:640. [PMID: 38727848 DOI: 10.1007/s11033-024-09445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/13/2024] [Indexed: 07/12/2024]
Abstract
Memory issues are a prevalent symptom in different neurodegenerative diseases and can also manifest in certain psychiatric conditions. Despite limited medications approved for treating memory problems, research suggests a lack of sufficient options in the market. Studies indicate that a significant percentage of elderly individuals experience various forms of memory disorders. Metformin, commonly prescribed for type 2 diabetes, has shown neuroprotective properties through diverse mechanisms. This study explores the potential of metformin in addressing memory impairments. The current research gathered its data by conducting an extensive search across electronic databases including PubMed, Web of Science, Scopus, and Google Scholar. Previous research suggests that metformin enhances brain cell survival and memory function in both animal and clinical models by reducing oxidative stress, inflammation, and cell death while increasing beneficial neurotrophic factors. The findings of the research revealed that metformin is an effective medication for enhancing various types of memory problems in numerous studies. Given the rising incidence of memory disorders, it is plausible to utilize metformin, which is an affordable and accessible drug. It is often recommended as a treatment to boost memory.
Collapse
Affiliation(s)
- Mohammad Pourfridoni
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Shirin Fathi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Shiva Fathi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Fatemeh Sadat Mirrashidi
- Departrment of Pediatrics, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hedyeh Askarpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Hadi Shafieemojaz
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran.
- Clinical Research Development Center of Imam Khomeini Hospital, Jiroft University of Medical Sciences, Jiroft, Iran.
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
14
|
Hassan YR, El-Shiekh RA, El Hefnawy HM, Mohamed OG, Abu-Elfotuh K, Hamdan AM, Darwish A, Gowifel AMH, Tripathi A, Michael CG. A mechanistic exploration of the metabolome of African mango seeds and its potential to alleviate cognitive impairment induced by high-fat/high-carbohydrate diets: Involvement of PI3K/AKT/GSK-3β/CREB, PERK/CHOP/Bcl-2, and AMPK/SIRT-1/mTOR Axes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117747. [PMID: 38218500 DOI: 10.1016/j.jep.2024.117747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irvingia gabonensis (Aubry-Lecomte ex O'Rorke) Baill., also known as "African mango" or "bush mango", belonging to family Irvingiaceae, has been mostly used as food and traditional medicine for weight loss and to enhance the health. AIM OF THE STUDY The overconsumption of high-fat and high-carbohydrate (HFHC) food induces oxidative stress, leading to neurological and cognitive dysfunction. Consequently, there is an immediate need for effective treatment. Hence, this study explored the efficacy of orlistat, metformin, and I. gabonensis seeds' total aqueous extract (IG SAE) in addressing HFHC-induced cognitive impairment by mitigating oxidative stress and their underlying mechanistic pathways. MATERIALS AND METHODS Initially, the secondary metabolite profile of IG SAE is determined using high-performance liquid chromatography coupled with a mass detector (UHPLC/MS). The in vivo study involves two phases: an established model phase with control (10 rats on a standard diet) and HFHC diet group (50 rats) for 3 months. In the study phase, HFHC is divided into 5 groups. The first subgroup receives HFHC diet only, while the remaining groups each receive HFHC diet with either Orlistat, metformin, or IG SAE at doses of 100 mg/kg and 200 mg/kg, respectively, for 28 days. RESULTS More than 150 phytoconstituents were characterized for the first holistic approach onto IG metabolome. Characterization of IG SAE revealed that tannins dominate metabolites in the plant. Total phenolics and flavonoids were estimated to standardize our extract (77.12 ± 7.09 μg Gallic acid equivalent/mg extract and 8.039 ± 0.53 μg Rutin equivalent/mg extract, respectively). Orlistat, metformin, and IG SAE successfully reduced the body weight, blood glucose level, lipid profile, oxidative stress and neurotransmitters levels leading to improved behavioral functions as well as histological alternation. Also, IG SAE halted inflammation, apoptosis, and endoplasmic reticulum stress, together with promoting autophagy, via modulation of PI3K/AKT/GSK-3β/CREB, PERK/CHOP/Bcl-2 and AMPK/SIRT-1/m-TOR pathways. CONCLUSION Metformin, orlistat, and IG SAE offer a promising multi-target therapy to mitigate HFHC diet-induced oxidative stress, addressing cognitive function. This involves diverse molecular mechanisms, particularly the modulation of inflammation, ER stress, and both PI3K/AKT/GSK-3β/CREB and AMPK/SIRT-1/m-TOR pathways. Furthermore, the higher dose of IG SAE demonstrated effects comparable to orlistat and metformin across most studied parameters.
Collapse
Affiliation(s)
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hala M El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Osama G Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Karema Abu-Elfotuh
- Clinical Pharmacy Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt; Al-Ayen Iraqi University, Thi-Qar, 64001, Iraq
| | - Ahmed M Hamdan
- Pharmacy Practice Department, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Alshaymaa Darwish
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt.
| | - Ayah M H Gowifel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, 11571, Egypt.
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
15
|
Sharma K, Puranik N, Yadav D. Neural Stem Cell-based Regenerative Therapy: A New Approach to Diabetes Treatment. Endocr Metab Immune Disord Drug Targets 2024; 24:531-540. [PMID: 37183465 DOI: 10.2174/1871530323666230512121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 05/16/2023]
Abstract
Diabetes mellitus (DM) is the most common metabolic disorder that occurs due to the loss, or impaired function of insulin-secreting pancreatic beta cells, which are of two types - type 1 (T1D) and type 2 (T2D). To cure DM, the replacement of the destroyed pancreatic beta cells of islet of Langerhans is the most widely practiced treatment. For this, isolating neuronal stem cells and cultivating them as a source of renewable beta cells is a significant breakthrough in medicine. The functions, growth, and gene expression of insulin-producing pancreatic beta cells and neurons are very similar in many ways. A diabetic patient's neural stem cells (obtained from the hippocampus and olfactory bulb) can be used as a replacement source of beta cells for regenerative therapy to treat diabetes. The same protocol used to create functional neurons from progenitor cells can be used to create beta cells. Recent research suggests that replacing lost pancreatic beta cells with autologous transplantation of insulin-producing neural progenitor cells may be a perfect therapeutic strategy for diabetes, allowing for a safe and normal restoration of function and a reduction in potential risks and a long-term cure.
Collapse
Affiliation(s)
- Kajal Sharma
- School of Sciences in Biotechnology, Jiwaji University, Gwalior, 474011, Madhya Pradesh, India
| | - Nidhi Puranik
- Department of Bio-logical Sciences, Bharathiar University, Tamil Nadu, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan, 38541, Korea
| |
Collapse
|
16
|
Paliwal S, Jain S, Mudgal P, Verma K, Paliwal S, Sharma S. Mitochondrial transfer restores impaired liver functions by AMPK/ mTOR/PI3K-AKT pathways in metabolic syndrome. Life Sci 2023; 332:122116. [PMID: 37739165 DOI: 10.1016/j.lfs.2023.122116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
AIM We investigated the effect of mitochondria transfer in high fat diet and streptozotocin (HFD + STZ) induced metabolic syndrome (MeS) in rats. The effect of mitochondria transfer in MeS with co-existing hypertension, hyperlipidaemia, diabetes and fatty liver together, has not been reported. MATERIALS AND METHODS Heathy mitochondria was transferred intravenously and the effect on several physiological parameters and biochemical parameters were examined in HFD + STZ rats. In addition, RNA-sequencing of healthy liver tissues was performed to elucidate the molecular pathways affected by mitochondria transfer in restoring metabolic health. KEY FINDINGS We observed reduction in both systolic and diastolic blood pressure levels, reduced blood glucose levels, and a marked reduction in serum lipid profiles. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) also improved along with evident restoration of liver morphology demonstrated by histopathological analysis. Enhanced mitochondrial biogenetics and reduction in oxidative stress and inflammatory markers was also observed. The pathway enrichment analysis revealed reduction in insulin resistance, inflammatory markers, regulation of mitochondrial bioenergetics, calcium ion homeostasis, fatty-acid β-oxidation, cytokine immune regulators, and enhanced lipid solubilisation. The significant effect of healthy mitochondria transfer in restoration of metabolic functions was observed by the activation of PI3K-AKT, AMPK/mTOR pathways and cytokine immune regulators, suggesting that inflammatory mediators were also significantly affected after mitochondria transfer. SIGNIFICANCE This study, provides insights on molecular processes triggered by mitochondria transfer in fatty liver regeneration and improvement of overall metabolic health.
Collapse
Affiliation(s)
- Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pallavi Mudgal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| |
Collapse
|
17
|
Holmannova D, Borsky P, Parova H, Stverakova T, Vosmik M, Hruska L, Fiala Z, Borska L. Non-Genomic Hallmarks of Aging-The Review. Int J Mol Sci 2023; 24:15468. [PMID: 37895144 PMCID: PMC10607657 DOI: 10.3390/ijms242015468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Aging is a natural, gradual, and inevitable process associated with a series of changes at the molecular, cellular, and tissue levels that can lead to an increased risk of many diseases, including cancer. The most significant changes at the genomic level (DNA damage, telomere shortening, epigenetic changes) and non-genomic changes are referred to as hallmarks of aging. The hallmarks of aging and cancer are intertwined. Many studies have focused on genomic hallmarks, but non-genomic hallmarks are also important and may additionally cause genomic damage and increase the expression of genomic hallmarks. Understanding the non-genomic hallmarks of aging and cancer, and how they are intertwined, may lead to the development of approaches that could influence these hallmarks and thus function not only to slow aging but also to prevent cancer. In this review, we focus on non-genomic changes. We discuss cell senescence, disruption of proteostasis, deregualation of nutrient sensing, dysregulation of immune system function, intercellular communication, mitochondrial dysfunction, stem cell exhaustion and dysbiosis.
Collapse
Affiliation(s)
- Drahomira Holmannova
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Pavel Borsky
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Tereza Stverakova
- Department of Clinical Biochemistry and Diagnostics, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.P.); (T.S.)
| | - Milan Vosmik
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Libor Hruska
- Department of Oncology and Radiotherapy, University Hospital, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (M.V.); (L.H.)
| | - Zdenek Fiala
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| | - Lenka Borska
- Institute of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (D.H.); (Z.F.); (L.B.)
| |
Collapse
|
18
|
Che L, Zhu C, Huang L, Xu H, Ma X, Luo X, He H, Zhang T, Wang N. Ginsenoside Rg2 Promotes the Proliferation and Stemness Maintenance of Porcine Mesenchymal Stem Cells through Autophagy Induction. Foods 2023; 12:foods12051075. [PMID: 36900592 PMCID: PMC10000966 DOI: 10.3390/foods12051075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be used as a cell source for cultivated meat production due to their adipose differentiation potential, but MSCs lose their stemness and undergo replicative senescence during expansion in vitro. Autophagy is an important mechanism for senescent cells to remove toxic substances. However, the role of autophagy in the replicative senescence of MSCs is controversial. Here, we evaluated the changes in autophagy in porcine MSCs (pMSCs) during long-term culture in vitro and identified a natural phytochemical, ginsenoside Rg2, that could stimulate pMSC proliferation. First, some typical senescence characteristics were observed in aged pMSCs, including decreased EdU-positive cells, increased senescence-associated beta-galactosidase activity, declined stemness-associated marker OCT4 expression, and enhanced P53 expression. Importantly, autophagic flux was impaired in aged pMSCs, suggesting deficient substrate clearance in aged pMSCs. Rg2 was found to promote the proliferation of pMSCs using MTT assay and EdU staining. In addition, Rg2 inhibited D-galactose-induced senescence and oxidative stress in pMSCs. Rg2 increased autophagic activity via the AMPK signaling pathway. Furthermore, long-term culture with Rg2 promoted the proliferation, inhibited the replicative senescence, and maintained the stemness of pMSCs. These results provide a potential strategy for porcine MSC expansion in vitro.
Collapse
Affiliation(s)
- Lina Che
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Caixia Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Lei Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Hui Xu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Xinmiao Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Xuegang Luo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Hongpeng He
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin 300457, China
- Correspondence: ; Tel.: +86-2260-6020-99; Fax: +86-2260-6022-98
| |
Collapse
|
19
|
Khaleghi-Mehr M, Delshad AA, Shafie-Damavandi S, Roghani M. Metformin mitigates amyloid β 1-40-induced cognitive decline via attenuation of oxidative/nitrosative stress and neuroinflammation. Metab Brain Dis 2023; 38:1127-1142. [PMID: 36723832 DOI: 10.1007/s11011-023-01170-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
Metformin is an antidiabetic medicine widely used for management of type 2 diabetes with neuroprotective effects and promising potential to attenuate cognitive impairment. The efficacy of metformin in attenuation of Alzheimer's disease (AD) pathology has not been well-documented. Thus, this study was designed to assess protective effect of metformin against Aβ1-40-instigared cognitive impairment. After intra-CA1 microinjection of aggregated Aβ1-40, rats received oral metformin (50 and/or 200 mg/kg/day) for two weeks. Cognition function was analyzed in various behavioral tasks besides measurement of hippocampal oxidative stress, apoptosis, and inflammation along with H&E staining and 3-nitrotyrosine (3-NT) immunohistochemistry. Obtained data showed significant improvement of discrimination score in novel object recognition test, higher alternation score in Y maze, greater latency in passive avoidance task, and lower working and reference memory errors in radial arm maze in metformin-treated Aβ-injured group. Moreover, metformin treatment attenuated hippocampal levels of nitrite, MDA, protein carbonyl, ROS, TNFα, GFAP, DNA fragmentation intensity, caspase 3 activity, AChE activity, and increased SOD activity and level of IL-10 as an anti-inflammatory factor. In addition, metformin treatment was associated with lower CA1 neuronal loss and it also decreased intensity of 3-NT immunoreactivity as an indicator of nitrosative stress. Taken together, obtained findings showed neuroprotective and anti-dementia property of metformin in male rats and this may have potential benefit in attenuation of cognitive decline and related complications in patients with neurodegenerative disorders such as AD besides diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|