1
|
Payette K, Uus AU, Aviles Verdera J, Hall M, Egloff A, Deprez M, Tomi-Tricot R, Hajnal JV, Rutherford MA, Story L, Hutter J. Fetal body organ T2* relaxometry at low field strength (FOREST). Med Image Anal 2025; 99:103352. [PMID: 39326224 DOI: 10.1016/j.media.2024.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Fetal Magnetic Resonance Imaging (MRI) at low field strengths is an exciting new field in both clinical and research settings. Clinical low field (0.55T) scanners are beneficial for fetal imaging due to their reduced susceptibility-induced artifacts, increased T2* values, and wider bore (widening access for the increasingly obese pregnant population). However, the lack of standard automated image processing tools such as segmentation and reconstruction hampers wider clinical use. In this study, we present the Fetal body Organ T2* RElaxometry at low field STrength (FOREST) pipeline that analyzes ten major fetal body organs. Dynamic multi-echo multi-gradient sequences were acquired and automatically reoriented to a standard plane, reconstructed into a high-resolution volume using deformable slice-to-volume reconstruction, and then automatically segmented into ten major fetal organs. We extensively validated FOREST using an inter-rater quality analysis. We then present fetal T2* body organ growth curves made from 100 control subjects from a wide gestational age range (17-40 gestational weeks) in order to investigate the relationship of T2* with gestational age. The T2* values for all organs except the stomach and spleen were found to have a relationship with gestational age (p<0.05). FOREST is robust to fetal motion, and can be used for both normal and fetuses with pathologies. Low field fetal MRI can be used to perform advanced MRI analysis, and is a viable option for clinical scanning.
Collapse
Affiliation(s)
- Kelly Payette
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Alena U Uus
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jordina Aviles Verdera
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Megan Hall
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Women & Children's Health, King's College London, London, UK
| | - Alexia Egloff
- Department of Women & Children's Health, King's College London, London, UK
| | - Maria Deprez
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | | | - Joseph V Hajnal
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Mary A Rutherford
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lisa Story
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Women & Children's Health, King's College London, London, UK
| | - Jana Hutter
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Bhattacharya S, Price AN, Uus A, Sousa HS, Marenzana M, Colford K, Murkin P, Lee M, Cordero-Grande L, Teixeira RPAG, Malik SJ, Deprez M. In vivo T2 measurements of the fetal brain using single-shot fast spin echo sequences. Magn Reson Med 2024; 92:715-729. [PMID: 38623934 PMCID: PMC7617281 DOI: 10.1002/mrm.30094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/18/2024] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
PURPOSE We propose a quantitative framework for motion-corrected T2 fetal brain measurements in vivo and validate the single-shot fast spin echo (SS-FSE) sequence to perform these measurements. METHODS Stacks of two-dimensional SS-FSE slices are acquired with different echo times (TE) and motion-corrected with slice-to-volume reconstruction (SVR). The quantitative T2 maps are obtained by a fit to a dictionary of simulated signals. The sequence is selected using simulated experiments on a numerical phantom and validated on a physical phantom scanned on a 1.5T system. In vivo quantitative T2 maps are obtained for five fetuses with gestational ages (GA) 21-35 weeks on the same 1.5T system. RESULTS The simulated experiments suggested that a TE of 400 ms combined with the clinically utilized TEs of 80 and 180 ms were most suitable for T2 measurements in the fetal brain. The validation on the physical phantom confirmed that the SS-FSE T2 measurements match the gold standard multi-echo spin echo measurements. We measured average T2s of around 200 and 280 ms in the fetal brain grey and white matter, respectively. This was slightly higher than fetal T2* and the neonatal T2 obtained from previous studies. CONCLUSION The motion-corrected SS-FSE acquisitions with varying TEs offer a promising practical framework for quantitative T2 measurements of the moving fetus.
Collapse
Affiliation(s)
- Suryava Bhattacharya
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Anthony N. Price
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Alena Uus
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Helena S. Sousa
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | | | - Kathleen Colford
- Centre for the Developing Brain, King’s College London, London, UK
| | - Peter Murkin
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Maggie Lee
- Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Lucilio Cordero-Grande
- Biomedical Image Technologies, ETSI Telecomunicración, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Rui Pedro A. G. Teixeira
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Shaihan J. Malik
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| | - Maria Deprez
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
- Centre for the Developing Brain, King’s College London, London, UK
| |
Collapse
|
3
|
Herrera CL, Kim MJ, Do QN, Owen DM, Fei B, Twickler DM, Spong CY. The human placenta project: Funded studies, imaging technologies, and future directions. Placenta 2023; 142:27-35. [PMID: 37634371 PMCID: PMC11257151 DOI: 10.1016/j.placenta.2023.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
The placenta plays a critical role in fetal development. It serves as a multi-functional organ that protects and nurtures the fetus during pregnancy. However, despite its importance, the intricacies of placental structure and function in normal and diseased states have remained largely unexplored. Thus, in 2014, the National Institute of Child Health and Human Development launched the Human Placenta Project (HPP). As of May 2023, the HPP has awarded over $101 million in research funds, resulting in 41 funded studies and 459 publications. We conducted a comprehensive review of these studies and publications to identify areas of funded research, advances in those areas, limitations of current research, and continued areas of need. This paper will specifically review the funded studies by the HPP, followed by an in-depth discussion on advances and gaps within placental-focused imaging. We highlight the progress within magnetic reasonance imaging and ultrasound, including development of tools for the assessment of placental function and structure.
Collapse
Affiliation(s)
- Christina L Herrera
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Meredith J Kim
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Quyen N Do
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - David M Owen
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Baowei Fei
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA; Department of Bioengineering, University of Texas at Dallas, Dallas, TX, USA
| | - Diane M Twickler
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA; Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Catherine Y Spong
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, and Parkland Health Dallas, Texas, USA
| |
Collapse
|
4
|
Cromb D, Slator PJ, De La Fuente M, Price AN, Rutherford M, Egloff A, Counsell SJ, Hutter J. Assessing within-subject rates of change of placental MRI diffusion metrics in normal pregnancy. Magn Reson Med 2023; 90:1137-1150. [PMID: 37183839 PMCID: PMC10962570 DOI: 10.1002/mrm.29665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation. METHODS Seventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T2 -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both aT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -ADC and a bicompartmentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel-incoherent-motion (T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ ) model fit. RESULTS There was a significant decline in placentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals forT 2 * $$ {\mathrm{T}}_2^{\ast } $$ (covariance = -0.47), but not ADC (covariance = -1.04). TheT 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57). CONCLUSION Whole placentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although onlyT 2 * $$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change ofT 2 * $$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmentalT 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Paddy J. Slator
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
| | - Miguel De La Fuente
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Anthony N. Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Centre for Medical EngineeringSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Centre for Medical EngineeringSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUK
| |
Collapse
|
5
|
Hutter J, Al-Wakeel A, Kyriakopoulou V, Matthew J, Story L, Rutherford M. Exploring the role of a time-efficient MRI assessment of the placenta and fetal brain in uncomplicated pregnancies and these complicated by placental insufficiency. Placenta 2023; 139:25-33. [PMID: 37295055 DOI: 10.1016/j.placenta.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/24/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The development of placenta and fetal brain are intricately linked. Placental insufficiency is related to poor neonatal outcomes with impacts on neurodevelopment. This study sought to investigate whether simultaneous fast assessment of placental and fetal brain oxygenation using MRI T2* relaxometry can play a complementary role to US and Doppler US. METHODS This study is a retrospective case-control study with uncomplicated pregnancies (n = 99) and cases with placental insufficiency (PI) (n = 49). Participants underwent placental and fetal brain MRI and contemporaneous ultrasound imaging, resulting in quantitative assessment including a combined MRI score called Cerebro-placental-T2*-Ratio (CPTR). This was assessed in comparison with US-derived Cerebro-Placental-Ratio (CPR), placental histopathology, assessed using the Amsterdam criteria [1], and delivery details. RESULTS Pplacental and fetal brain T2* decreased with increasing gestational age in both low and high risk pregnancies and were corrected for gestational-age alsosignificantly decreased in PI. Both CPR and CPTR score were significantly correlated with gestational age at delivery for the entire cohort. CPTR was, however, also correlated independently with gestational age at delivery in the PI cohort. It furthermore showed a correlation to birth-weight-centile in healthy controls. DISCUSSION This study indicates that MR analysis of the placenta and brain may play a complementary role in the investigation of fetal development. The additional correlation to birth-weight-centile in controls may suggest a role in the determination of placental health even in healthy controls. To our knowledge, this is the first study assessing quantitatively both placental and fetal brain development over gestation in a large cohort of low and high risk pregnancies. Future larger prospective studies will include additional cohorts.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK.
| | - Ayman Al-Wakeel
- GKT School of Medical Education, King's College London, London, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| | - Jacqueline Matthew
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| | - Lisa Story
- Centre for the Developing Brain, King's College London, UK; Institute for Women's and Children's Health, King's College London, UK; Fetal Medicine Unit, St Thomas' Hospital, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| |
Collapse
|
6
|
Slator PJ, Verdera JA, Tomi-Tricot R, Hajnal JV, Alexander DC, Hutter J. Low-Field Combined Diffusion-Relaxation MRI for Mapping Placenta Structure and Function. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.06.23290983. [PMID: 37333076 PMCID: PMC10274995 DOI: 10.1101/2023.06.06.23290983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Purpose Demonstrating quantitative multi-parametric mapping in the placenta with combined T 2 ∗ -diffusion MRI at low-field (0.55T). Methods We present 57 placental MRI scans performed on a commercially available 0.55T scanner. We acquired the images using a combined T 2 ∗ -diffusion technique scan that simultaneously acquires multiple diffusion preparations and echo times. We processed the data to produce quantitative T 2 ∗ and diffusivity maps using a combined T 2 ∗ -ADC model. We compared the derived quantitative parameters across gestation in healthy controls and a cohort of clinical cases. Results Quantitative parameter maps closely resemble those from previous experiments at higher field strength, with similar trends in T 2 ∗ and ADC against gestational age observed. Conclusion Combined T 2 ∗ -diffusion placental MRI is reliably achievable at 0.55T. The advantages of lower field strength - such as cost, ease of deployment, increased accessibility and patient comfort due to the wider bore, and increased T 2 ∗ for larger dynamic ranges - can support the widespread roll out of placental MRI as an adjunct to ultrasound during pregnancy.
Collapse
Affiliation(s)
- Paddy J Slator
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Jordina Aviles Verdera
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Raphael Tomi-Tricot
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|