1
|
Lux J, Sánchez García L, Chaparro Fernández P, Laloli L, Licheri MF, Gallay C, Hermans PWM, Croucher NJ, Veening JW, Dijkman R, Straume D, Hathaway LJ. AmiA and AliA peptide ligands, found in Klebsiella pneumoniae, are imported into pneumococci and alter the transcriptome. Sci Rep 2024; 14:12416. [PMID: 38816440 PMCID: PMC11139975 DOI: 10.1038/s41598-024-63217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Klebsiella pneumoniae releases the peptides AKTIKITQTR and FNEMQPIVDRQ, which bind the pneumococcal proteins AmiA and AliA respectively, two substrate-binding proteins of the ABC transporter Ami-AliA/AliB oligopeptide permease. Exposure to these peptides alters pneumococcal phenotypes such as growth. Using a mutant in which a permease domain of the transporter was disrupted, by growth analysis and epifluorescence microscopy, we confirmed peptide uptake via the Ami permease and intracellular location in the pneumococcus. By RNA-sequencing we found that the peptides modulated expression of genes involved in metabolism, as pathways affected were mostly associated with energy or synthesis and transport of amino acids. Both peptides downregulated expression of genes involved in branched-chain amino acid metabolism and the Ami permease; and upregulated fatty acid biosynthesis genes but differed in their regulation of genes involved in purine and pyrimidine biosynthesis. The transcriptomic changes are consistent with growth suppression by peptide treatment. The peptides inhibited growth of pneumococcal isolates of serotypes 3, 8, 9N, 12F and 19A, currently prevalent in Switzerland, and caused no detectable toxic effect to primary human airway epithelial cells. We conclude that pneumococci take up K. pneumoniae peptides from the environment via binding and transport through the Ami permease. This changes gene expression resulting in altered phenotypes, particularly reduced growth.
Collapse
Affiliation(s)
- Janine Lux
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lucía Sánchez García
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Patricia Chaparro Fernández
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Laura Laloli
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Manon F Licheri
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
| | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Peter W M Hermans
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht (UMCU), Utrecht, The Netherlands
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, White City Campus, Imperial College London, Sir Michael Uren Hub, London, UK
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- Microscopy Imaging Centre (MIC), Theodor Kocher Institute, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Lucy J Hathaway
- Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Friedbühlstrasse 25, CH-3001, Bern, Switzerland.
| |
Collapse
|
2
|
Lux J, Portmann H, Sánchez García L, Erhardt M, Holivololona L, Laloli L, Licheri MF, Gallay C, Hoepner R, Croucher NJ, Straume D, Veening JW, Dijkman R, Heller M, Grandgirard D, Leib SL, Hathaway LJ. Klebsiella pneumoniae peptide hijacks a Streptococcus pneumoniae permease to subvert pneumococcal growth and colonization. Commun Biol 2024; 7:425. [PMID: 38589539 PMCID: PMC11001997 DOI: 10.1038/s42003-024-06113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a previously uncharacterized peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.
Collapse
Affiliation(s)
- Janine Lux
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Hannah Portmann
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Lucía Sánchez García
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Maria Erhardt
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Lalaina Holivololona
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Laura Laloli
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Manon F Licheri
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Clement Gallay
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Robert Hoepner
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Sir Michael Uren Hub, White City Campus, Imperial College London, London, UK
| | - Daniel Straume
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1430, Ås, Norway
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Ronald Dijkman
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Lucy J Hathaway
- Faculty of Medicine, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Kanojiya P, Saroj SD. Effect of respiratory tract co-colonizers on initial attachment of Neisseria meningitidis. Arch Microbiol 2023; 205:273. [PMID: 37400657 DOI: 10.1007/s00203-023-03612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Respiratory tract is a complex system comprising of unique microbiota inhabitants. Neisseria meningitidis, Staphylococcus aureus, Streptococcus pyogenes, Pseudomonas aeruginosa and Klebsiella pneumoniae are few prevalent bacteria in the community composition during lung infections. Although, N. meningitidis resides asymptomatically in nasopharynx of the human host, it can cause fatal infections like meningitis. However, factors affecting transit from carriage to symptomatic infection are not well understood. Various host metabolites and environmental conditions affect the virulence of bacteria. Here, we report that presence of co-colonizers significantly reduces the initial attachment of N. meningitidis to A549 nasopharyngeal epithelial cells. Further, significant decrease in invasion to A549 nasopharyngeal epithelial cells was observed. Moreover, survival in J774A.1 murine macrophage also increases significantly when conditioned media (CM) from S. pyogenes and L. rhamnosus is used for culturing N. meningitidis. The increase in survival could be attributed to increased capsule synthesis. The gene expression studies revealed increased expression of siaC and ctrB in CM prepared from the growth S. pyogenes and L. rhamnosus. Overall, the results suggest change in the virulence of N. meningitidis is assisted by lung microbiota.
Collapse
Affiliation(s)
- Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, 412115, India
| | - Sunil D Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, Maharashtra, 412115, India.
| |
Collapse
|