1
|
Alehosein L, Hoseini SJ, Bahrami M, Nabavizadeh SM. Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4041-4058. [PMID: 39878764 DOI: 10.1021/acs.langmuir.4c04397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl2(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of p-nitrophenol and o-nitrophenol to p-aminophenol and o-aminophenol. The porous network of the Pd NPs@HOF introduced strong active sites between Mel, TMA, and Pd(0). Kinetic studies showed that the Pd NPs@HOF catalyst exhibited an enhanced rate of p-nitrophenol and o-nitrophenol reduction in comparison with Pd@reduced-graphene oxide (r-GO) with rates that were 1.7 times faster for p-nitrophenol and 1.5 times faster for o-nitrophenol or even 10 times faster than some Pd-based catalysts, with a maximum conversion of 97.1% which was attributed to the higher porosity and greater surface-to-volume ratio of the Pd NPs@HOF material. Furthermore, π-π stacking interactions enhance the catalytic activity of the Pd NPs@HOF catalyst by increasing the active sites, stabilizing the NPs and trapping the nitrophenols, facilitating the electron transfer, and providing the synergistic effect. Also, contributions of hydrogen bonding, van der Waals forces, electrostatic interactions, and π-σ noncovalent interactions are reasons for better performance of Pd NPs@HOF than Pd/r-GO catalyst with the reduced functional groups.
Collapse
Affiliation(s)
- Ladan Alehosein
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran
| | - S Jafar Hoseini
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran
| | - Mehrangiz Bahrami
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran
| | - S Masoud Nabavizadeh
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran
| |
Collapse
|
2
|
Jiao Z, zhuGe X, Jalili Z, Wu Y. A highly efficient and magnetically separable Fe3O4/WO3 catalyst for the synthesis of some benzimidazoles, benzoxazoles, and benzothiazoles, serving as potential drugs to treat nephropathy diseases. J Mol Struct 2025; 1323:140744. [DOI: 10.1016/j.molstruc.2024.140744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Hassanzadeh N, Dekamin MG, Valiey E. A supramolecular magnetic and multifunctional Titriplex V-grafted chitosan organocatalyst for the synthesis of acridine-1,8-diones and 2-amino-3-cyano-4 H-pyran derivatives. NANOSCALE ADVANCES 2024:d4na00264d. [PMID: 39502107 PMCID: PMC11533062 DOI: 10.1039/d4na00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
In this research, a new supramolecular magnetic modified chitosan, namely, Fe3O4@CS-TDI-Titriplex V, was designed and prepared conveniently by grafting diethylenetriaminepentaacetic acid (Titriplex V) onto a biopolymeric chitosan backbone having urethane, urea, ester and amide functional groups. The obtained magnetic biopolymeric nanomaterial was properly characterized by different spectroscopic, microscopic or analytical methods including FTIR spectroscopy, EDX spectroscopy, XRD, FESEM, TG-DTA and VSM. The application of the supramolecular Fe3O4@CS-TDI-Titriplex V nanocomposite as a heterogeneous solid acidic organocatalyst was investigated to promote the three-component synthesis of both acridinediones and 2-amino-3-cyano-4H-pyran derivatives as important pharmaceutical scaffolds under green conditions. The obtained nanomaterial exhibited proper catalytic activity in the above mentioned transformations through multicomponent reaction (MCR) strategies. The reactions proceeded very well in the presence of the Fe3O4@CS-TDI-Titriplex V solid acid nanomaterial in EtOH to afford the corresponding acridinediones and 2-amino-3-cyano-4H-pyran derivatives in high to excellent yields. The key advantages of the present protocol include the use of a renewable, biopolymeric and biodegradable solid acid as well as a simple procedure for the preparation of the hybrid material. Furthermore, the Fe3O4@CS-TDI-Titriplex V nanomaterial was used four times with a slight decrease in its catalytic activity.
Collapse
Affiliation(s)
- Najmeh Hassanzadeh
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 1684613314 Iran
| |
Collapse
|
4
|
Hanifi S, Dekamin MG, Eslami M. Magnetic BiFeO 3 nanoparticles: a robust and efficient nanocatalyst for the green one-pot three-component synthesis of highly substituted 3,4-dihydropyrimidine-2(1H)-one/thione derivatives. Sci Rep 2024; 14:22201. [PMID: 39333595 PMCID: PMC11436662 DOI: 10.1038/s41598-024-72407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
In this research, magnetic bismuth ferrite nanoparticles (BFO MNPs) were prepared through a convenient method and characterized. The structure and morphological characteristics of the prepared nanomaterial were confirmed through analyses using Fourier-transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, powder X-ray diffraction (XRD), N2 adsorption-desorption isotherms and vibrating sample magnetometry (VSM) techniques. The obtained magnetic BFO nanomaterial was investigated, as a heterogeneous Lewis acid, in three component synthesis of 3,4-dihydropyrimidin-2 (1H)-ones/thiones (DHPMs/DHPMTs). It was found that the BFO MNPs exhibit remarkable efficacy in the synthesis of various DHPMs as well as their thione analogues. It is noteworthy that this research features low catalyst loading, good to excellent yields, environmentally friendly conditions, short reaction time, simple and straightforward work-up, and the reusability of the catalyst, distinguishing it from other recently reported protocols. Additionally, the structure of the DHPMs/DHPMTs was confirmed through 1H NMR, FTIR, and melting point analyses. This environmentally-benign methodology demonstrates the potential of the catalyst for more sustainable and efficient practices in green chemistry.
Collapse
Affiliation(s)
- Safa Hanifi
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mohammad Eslami
- Department of Chemistry, Behbahan Khatam Alanbia University of Technology, Behbahan, 63616-63973, Iran
| |
Collapse
|
5
|
Momeni S, Ghorbani-Vaghei R. Facile synthesis of novel acidic modified magnetic graphene oxide and its application in the green synthesis of pyrimido[4,5-b]quinolines. Sci Rep 2024; 14:21531. [PMID: 39278947 PMCID: PMC11402980 DOI: 10.1038/s41598-024-71461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/28/2024] [Indexed: 09/18/2024] Open
Abstract
This study aimed to create an innovative acidic nano catalyst capable of producing pyrimido[4,5-b]quinolines under environmentally friendly conditions. To achieve this objective, 1,3-benzenedisulfonyl amide (BDSA) was immobilized onto the surface of magnetic graphene oxide (GO/Fe3O4@PTRMS@BDSA@SO3H), and its surface was acidified using chlorosulfonic acid. The synthesized catalyst's structure was thoroughly examined and verified through various analyses, including FTIR, EDX, elemental mapping, FESEM, XRD, TGA, and DSC. This novel nano catalyst exhibited exceptional activity and selectivity in synthesizing pyrimido[4,5-b]quinoline derivatives under solvent-free conditions, at low temperatures, and with high efficiency. Its catalytic effectiveness stemmed from features such as easy and eco-friendly synthesis methods, abundant accessible catalytic sites, a high surface area, remarkable selectivity, and facile separation from the reaction medium. Additionally, the catalyst proved to be cost-effective, safe, scalable, and reusable for up to four times.
Collapse
Affiliation(s)
- Sarieh Momeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
6
|
Bondarian S, Dekamin MG, Valiey E, Naimi-Jamal MR. Supramolecular Cu(ii) nanoparticles supported on a functionalized chitosan containing urea and thiourea bridges as a recoverable nanocatalyst for efficient synthesis of 1 H-tetrazoles. RSC Adv 2023; 13:27088-27105. [PMID: 37701273 PMCID: PMC10493853 DOI: 10.1039/d3ra01989f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
A cost-effective and convenient method for supporting of Cu(ii) nanoparticles on a modified chitosan backbone containing urea and thiourea bridges using thiosemicarbazide (TS), pyromellitic dianhydride (PMDA) and toluene-2,4-diisocyanate (TDI) linkers was designed. The prepared supramolecular (CS-TDI-PMDA-TS-Cu(ii)) nanocomposite was characterized by using Fourier-transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), thermogravimetry/differential thermogravimetry analysis (TGA/DTA), energy-dispersive X-ray spectroscopy (EDS), EDS elemental mapping and X-ray diffraction (XRD). The obtained supramolecular CS-TDI-PMDA-TS-Cu(ii) nanomaterial was demonstrated to act as a multifunctional nanocatalyst for promoting of multicomponent cascade Knoevenagel condensation/click 1,3-dipolar azide-nitrile cycloaddition reactions very efficiently between aromatic aldehydes, sodium azide and malononitrile under solvent-free conditions and affording the corresponding (E)-2-(1H-tetrazole-5-yl)-3-arylacrylenenitrile derivatives. Low catalyst loading, working under solvent-free conditions and short reaction time as well as easy preparation and recycling, and reuse of the catalyst for five consecutive cycles without considerable decrease in its catalytic efficiency make it a suitable candidate for the catalytic reactions promoted by Cu species.
Collapse
Affiliation(s)
- Shirin Bondarian
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - M Reza Naimi-Jamal
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
7
|
Sepehrnia M, Davoodabadi Farahani S, Hamidi Arani A, Taghavi A, Golmohammadi H. Laboratory investigation of GO-SA-MWCNTs ternary hybrid nanoparticles efficacy on dynamic viscosity and wear properties of oil (5W30) and modeling based on machine learning. Sci Rep 2023; 13:10537. [PMID: 37386047 DOI: 10.1038/s41598-023-37623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 06/24/2023] [Indexed: 07/01/2023] Open
Abstract
In the present study, the properties of ternary hybrid nanofluid (THNF) of oil (5W30) - Graphene Oxide (GO)-Silica Aerogel (SA)-multi-walled carbon nanotubes (MWCNTs) in volume fractions ([Formula: see text] of 0.3%, 0.6%, 0.9%, 1.2%, and 1.5% and at temperatures 5 to 65 °C has been measured. This THNF is made in a two-step method and a viscometer device made in USA is used for viscosity measurements. The wear test was performed via a pin-on-disk tool according to the ASTM G99 standard. The outcomes show that the viscosity increases with the increase in the [Formula: see text], and the reduction in temperature. By enhancing the temperature by 60 °C, at [Formula: see text] = 1.2% and a shear rate (SR) of 50 rpm, a viscosity reduction of approximately 92% has been observed. Also, the results showed that with the rise in SR, the shear stress increased and the viscosity decreased. The estimated values of THNF viscosity at various SRs and temperatures show that its behavior is non-Newtonian. The efficacy of adding nanopowders (NPs) on the stability of the friction and wear behavior of the base oil has been studied. The findings of the test display that the wear rate and friction coefficient increased about 68% and 4.5% for [Formula: see text] = 1.5% compared to [Formula: see text] = 0. Neural network (NN), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gaussian process regression (GPR) based on machine learning (ML) have been used to model viscosity. Each model predicted the viscosity of the THNF well, and Rsquare > 0.99.
Collapse
Affiliation(s)
- Mojtaba Sepehrnia
- Department of Mechanical Engineering, Technical and Vocational University, Qom, Iran.
- Department of Mechanical Engineering, Shahabdanesh University, Qom, Iran.
| | | | | | - Ali Taghavi
- Department of Mechanical Engineering, Shahabdanesh University, Qom, Iran
| | | |
Collapse
|
8
|
Malihishoja A, Dekamin MG, Eslami M. Magnetic polyborate nanoparticles as a green and efficient catalyst for one-pot four-component synthesis of highly substituted imidazole derivatives. RSC Adv 2023; 13:16584-16601. [PMID: 37274415 PMCID: PMC10234260 DOI: 10.1039/d3ra02262e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/06/2023] [Indexed: 06/06/2023] Open
Abstract
In this study, magnetic polyborate nanoparticles (MPBNPs) were prepared via a simple procedure from boric acid by using ball-milling and then characterized by various spectroscopic, microscopic and analytical methods including FT-IR, EDX, XRD, FESEM, VSM and TGA analysis. The obtained MPBNPs were further explored, as a green and highly efficient catalyst, in the multi-component synthesis of a wide range of tetra-substituted imidazoles from cascade cyclocondensation as well as in situ air oxidation of benzil or benzoin, aromatic aldehydes, primary amine and ammonium acetate in EtOH, as a green solvent, under reflux conditions. Additionally, environmentally friendly conditions for the preparation of the catalyst by the use of non-toxic reactants, facile procedure and high to excellent yields of the desired products as well as the use of a green solvent are some advantages of this new protocol.
Collapse
Affiliation(s)
- Alireza Malihishoja
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | - Mohammad Eslami
- Department of Chemistry, Behbahan Khatam Alanbia University of Technology Behbahan 63616-63973 Iran
| |
Collapse
|
9
|
Shakib P, Dekamin MG, Valiey E, Karami S, Dohendou M. Ultrasound-Promoted preparation and application of novel bifunctional core/shell Fe 3O 4@SiO 2@PTS-APG as a robust catalyst in the expeditious synthesis of Hantzsch esters. Sci Rep 2023; 13:8016. [PMID: 37198267 DOI: 10.1038/s41598-023-33990-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/21/2023] [Indexed: 05/19/2023] Open
Abstract
In this work, D-(-)-α-phenylglycine (APG)-functionalized magnetic nanocatalyst (Fe3O4@SiO2@PTS-APG) was designed and successfully prepared in order to implement the principles of green chemistry for the synthesis of polyhydroquinoline (PHQ) and 1,4-dihydropyridine (1,4-DHP) derivatives under ultrasonic irradiation in EtOH. After preparing of the nanocatalyst, its structure was confirmed by different spectroscopic methods or techniques including Fourier transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDS), field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and thermal gravimetric analysis (TGA). The performance of Fe3O4@SiO2@PTS-APG nanomaterial, as a heterogeneous catalyst for the Hantzsch condensation, was examined under ultrasonic irradiation and various conditions. The yield of products was controlled under various conditions to reach more than 84% in just 10 min, which indicates the high performance of the nanocatalyst along with the synergistic effect of ultrasonic irradiation. The structure of the products was identified by melting point as well as FTIR and 1H NMR spectroscopic methods. The Fe3O4@SiO2@PTS-APG nanocatalyst is easily prepared from commercially available, lower toxic and thermally stable precursors through a cost-effective, highly efficient and environmentally friendly procedure. The advantages of this method include simplicity of the operation, reaction under mild conditions, the use of an environmentally benign irradiation source, obtaining pure products with high efficiency in short reaction times without using a tedious path, which all of them address important green chemistry principles. Finally, a reasonable mechanism is proposed for the preparation of polyhydroquinoline (PHQ) and 1,4-dihydropyridine (1,4-DHP) derivatives in the presence of Fe3O4@SiO2@PTS-APG bifunctional magnetic nanocatalyst.
Collapse
Affiliation(s)
- Peyman Shakib
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran.
| | - Ehsan Valiey
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Shahriar Karami
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Mohammad Dohendou
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 1684613114, Iran
| |
Collapse
|