1
|
Sharpe AL, Liter LR, Donohue D, Carter KA, Vangeneugden P, Weaver SM, Stout MB, Beckstead MJ. Aged mice exhibit faster acquisition of intravenous opioid self-administration with variable effects on intake. Neuropharmacology 2025; 274:110464. [PMID: 40228626 DOI: 10.1016/j.neuropharm.2025.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/06/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Although opioid abuse is more prevalent in young individuals, the rates of opioid use, overdose, and use disorders continue to climb among the elderly. Little is known about the biology underlying abuse potential in a healthy, aged population, in part due to technical and logistical difficulties testing intravenous self-administration in aged rodents. The goal of this study was to address a critical gap in the literature regarding age-dependent effects in opioid (remifentanil and fentanyl) self-administration. Male and female C57Bl/6J and C57Bl/6NJ mice were divided into young (mean: 19 weeks) and old (mean: 101 weeks) groups and were trained to self-administer intravenous fentanyl or remifentanil in daily operant sessions. Acquisition, intake, and cue-responding after forced abstinence were measured for both drugs, and a dose-response curve and dose-escalation were conducted for remifentanil and fentanyl, respectively. Surprisingly, old mice learned to self-administer both remifentanil and fentanyl faster and more accurately than young mice. Baseline intake of remifentanil was also greater in old mice compared to the young group; however, we did not see increased intake of fentanyl with age at either dose tested. Furthermore, old mice showed greater responding for cues previously associated with remifentanil after a forced abstinence, but this result was not observed with fentanyl. This first report of opioid self-administration in greater than 20-month-old mice suggests that old mice have an increased vulnerability for opioid use compared to younger counterparts, underscoring the importance of future work to uncover the biological mechanisms that are responsible.
Collapse
Affiliation(s)
- Amanda L Sharpe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences, Oklahoma City, OK, USA.
| | - Laci R Liter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Darius Donohue
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kelsey A Carter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Patricia Vangeneugden
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sofia M Weaver
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
2
|
Chen Y, Xiao T, Kimbrough A. Escalation of intravenous fentanyl self-administration and assessment of withdrawal behavior in male and female mice. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06739-x. [PMID: 39730840 DOI: 10.1007/s00213-024-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
RATIONALE The rise in overdose deaths from synthetic opioids, especially fentanyl, necessitates the development of preclinical models to study fentanyl use disorder (FUD). While there has been progress with rodent models, additional translationally relevant models are needed to examine excessive fentanyl intake and withdrawal signs. OBJECTIVE The current study aimed to develop a translationally relevant preclinical mouse model of FUD by employing chronic intravenous fentanyl self-administration (IVSA). METHODS The study performed intravenous self-administration (IVSA) of fentanyl in male and female C57BL/6J mice for 14 days. Mechanical pain sensitivity during withdrawal was assessed using the von Frey test. Anxiety-like behavior was evaluated via the open field test one week into abstinence, and drug seeking behavior after extended abstinence was assessed at four weeks abstinence. RESULTS Both male and female mice demonstrated a significant escalation in fentanyl intake over the 14 days of self-administration, with significant front-loading observed in the final days of self-administration. Mice showed increased mechanical pain sensitivity at 36 and 48hours withdrawal from fentanyl. At 1-week abstinence from fentanyl, mice exhibited increased anxiety-like behavior compared to naive mice. Four weeks into abstinence from fentanyl, mice maintained lever-pressing behavior on the previous reward-associated active lever, with significantly higher active lever pressing compared to inactive lever pressing. CONCLUSIONS The study establishes a translationally relevant mouse model of IVSA of fentanyl, effectively encapsulating critical aspects of FUD, including escalation of drug intake, front-loading behavior, withdrawal signs, and drug-seeking behavior into extended abstinence. This model offers a robust basis for further exploration into behavioral and neurobiological mechanisms involved in fentanyl dependence and potential therapeutic strategies.
Collapse
Affiliation(s)
- Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47904, USA
| | - Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47904, USA
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47904, USA.
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, 47904, USA.
| |
Collapse
|
3
|
Johnson EO, Fisher HS, Sullivan KA, Corradin O, Sanchez-Roige S, Gaddis NC, Sami YN, Townsend A, Teixeira Prates E, Pavicic M, Kruse P, Chesler EJ, Palmer AA, Troiani V, Bubier JA, Jacobson DA, Maher BS. An emerging multi-omic understanding of the genetics of opioid addiction. J Clin Invest 2024; 134:e172886. [PMID: 39403933 PMCID: PMC11473141 DOI: 10.1172/jci172886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Opioid misuse, addiction, and associated overdose deaths remain global public health crises. Despite the tremendous need for pharmacological treatments, current options are limited in number, use, and effectiveness. Fundamental leaps forward in our understanding of the biology driving opioid addiction are needed to guide development of more effective medication-assisted therapies. This Review focuses on the omics-identified biological features associated with opioid addiction. Recent GWAS have begun to identify robust genetic associations, including variants in OPRM1, FURIN, and the gene cluster SCAI/PPP6C/RABEPK. An increasing number of omics studies of postmortem human brain tissue examining biological features (e.g., histone modification and gene expression) across different brain regions have identified broad gene dysregulation associated with overdose death among opioid misusers. Drawn together by meta-analysis and multi-omic systems biology, and informed by model organism studies, key biological pathways enriched for opioid addiction-associated genes are emerging, which include specific receptors (e.g., GABAB receptors, GPCR, and Trk) linked to signaling pathways (e.g., Trk, ERK/MAPK, orexin) that are associated with synaptic plasticity and neuronal signaling. Studies leveraging the agnostic discovery power of omics and placing it within the context of functional neurobiology will propel us toward much-needed, field-changing breakthroughs, including identification of actionable targets for drug development to treat this devastating brain disease.
Collapse
Affiliation(s)
- Eric O. Johnson
- GenOmics and Translational Research Center and
- Fellow Program, RTI International, Research Triangle Park, North Carolina, USA
| | | | - Kyle A. Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Olivia Corradin
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, UCSD, La Jolla, California, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Yasmine N. Sami
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alice Townsend
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Mirko Pavicic
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Peter Kruse
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Abraham A. Palmer
- Department of Psychiatry, UCSD, La Jolla, California, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
| | - Vanessa Troiani
- Geisinger College of Health Sciences, Scranton, Pennsylvania, USA
| | | | - Daniel A. Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Brion S. Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Corley C, Craig A, Sadek S, Marusich JA, Chehimi SN, White AM, Holdiness LJ, Reiner BC, Gipson CD. Enhancing translation: A need to leverage complex preclinical models of addictive drugs to accelerate substance use treatment options. Pharmacol Biochem Behav 2024; 243:173836. [PMID: 39067531 PMCID: PMC11344688 DOI: 10.1016/j.pbb.2024.173836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Preclinical models of addictive drugs have been developed for decades to model aspects of the clinical experience in substance use disorders (SUDs). These include passive exposure as well as volitional intake models across addictive drugs and have been utilized to also measure withdrawal symptomatology and potential neurobehavioral mechanisms underlying relapse to drug seeking or taking. There are a number of Food and Drug Administration (FDA)-approved medications for SUDs, however, many demonstrate low clinical efficacy as well as potential sex differences, and we also note gaps in the continuum of care for certain aspects of clinical experiences in individuals who use drugs. In this review, we provide a comprehensive update on both frequently utilized and novel behavioral models of addiction with a focus on translational value to the clinical experience and highlight the need for preclinical research to follow epidemiological trends in drug use patterns to stay abreast of clinical treatment needs. We then note areas in which models could be improved to enhance the medications development pipeline through efforts to enhance translation of preclinical models. Next, we describe neuroscience efforts that can be leveraged to identify novel biological mechanisms to enhance medications development efforts for SUDs, focusing specifically on advances in brain transcriptomics approaches that can provide comprehensive screening and identification of novel targets. Together, the confluence of this review demonstrates the need for careful selection of behavioral models and methodological parameters that better approximate the clinical experience combined with cutting edge neuroscience techniques to advance the medications development pipeline for SUDs.
Collapse
Affiliation(s)
- Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Samar N Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lexi J Holdiness
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Sharpe AL, Liter LR, Donohue D, Carter KA, Vangeneugden P, Weaver S, Stout MB, Beckstead MJ. Aged mice exhibit faster acquisition of intravenous opioid self-administration with variable effects on intake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611052. [PMID: 39282417 PMCID: PMC11398421 DOI: 10.1101/2024.09.03.611052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Although opioid abuse is more prevalent in young individuals, opioid use, overdose, and use disorders continue to climb at a rapid rate among the elderly. Little is known about abuse potential in a healthy aged population, in part due to technical and logistical difficulties testing intravenous self-administration in aged rodents. The goal of this study was to address the critical gap in the literature regarding age-dependent differences in opioid (remifentanil and fentanyl) self-administration between old and young mice. Male and female mice were grouped into young (mean: 19 weeks) and old (mean: 101 weeks), and were trained to self-administer intravenous fentanyl or remifentanil in daily sessions. In both old and young mice, acquisition, intake, and cue-responding after forced abstinence were measured for both drugs, and a dose-response curve (remifentanil) and dose-escalation (fentanyl) were conducted. Surprisingly, old mice learned to self-administer both remifentanil and fentanyl faster and more accurately than young mice. Baseline intake of remifentanil was also substantially greater in old mice compared to their young counterparts; however, we did not see increased intake of fentanyl with age at either dose tested. Further, compared to young mice, the old mice showed a greater incubation of responding for cues previously associated with remifentanil after a forced abstinence, but again this was not observed with fentanyl. Together these data suggest that an aged population may have an increased drug-abuse vulnerability for opioids compared to young counterparts and underscore the importance of future work on mechanisms responsible for this increased vulnerability.
Collapse
Affiliation(s)
- Amanda L Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences
| | - Laci R Liter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation; Graduate Program in Biomedical Sciences, University of Oklahoma Health Sciences
| | - Darius Donohue
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | - Kelsey A Carter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | | | - Sofia Weaver
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation
| | - Michael J Beckstead
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Sadek SM, Khatri SN, Kipp Z, Dunn KE, Beckmann JS, Stoops WW, Hinds TD, Gipson CD. Impacts of xylazine on fentanyl demand, body weight, and acute withdrawal in rats: A comparison to lofexidine. Neuropharmacology 2024; 245:109816. [PMID: 38128606 PMCID: PMC10843705 DOI: 10.1016/j.neuropharm.2023.109816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The opioid use landscape has recently shifted to include xylazine, a veterinary anesthetic, as an adulterant in the fentanyl supply. The health impacts of xylazine as an emerging fentanyl adulterant has raised alarm regarding xylazine as a public health threat, warranting research on the impacts of xylazine on fentanyl's behavioral effects. No prior studies have evaluated the effects of xylazine on fentanyl consumption at various unit doses, fentanyl demand, or withdrawal as compared to the Food and Drug Administration-approved opioid withdrawal medication, lofexidine (Lucemyra®). This is important because lofexidine and xylazine are both adrenergic α2a (A2aR) agonists, however, lofexidine is not a noted fentanyl adulterant. Here we evaluated xylazine and lofexidine combined with self-administered fentanyl doses in male and female rats and evaluated fentanyl demand, body weight, and acute withdrawal. Consumption of fentanyl alone increased at various unit doses compared to saline. Xylazine but not lofexidine shifted fentanyl consumption downward at a number of unit doses, however, both lofexidine and xylazine suppressed fentanyl demand intensity as compared to a fentanyl alone control group. Further, both fentanyl + lofexidine and fentanyl + xylazine reduced behavioral signs of fentanyl withdrawal immediately following SA, but signs increased by 12 h only in the xylazine co-exposed group. Weight loss occurred throughout fentanyl SA and withdrawal regardless of group, although the xylazine group lost significantly more weight during the first 24 h of withdrawal than the other two groups. Severity of weight loss during the first 24 h of withdrawal was also correlated with severity of somatic signs of fentanyl withdrawal. Together, these results suggest that body weight loss may be an important indicator of withdrawal severity during acute withdrawal from the xylazine/fentanyl combination, warranting further translational evaluation.
Collapse
Affiliation(s)
- Safiyah M Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Shailesh N Khatri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Zachary Kipp
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Kelly E Dunn
- Psychiatry and Behavioral Sciences Department, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua S Beckmann
- Department of Psychology, University of Kentucky, Lexington, KY, USA
| | - William W Stoops
- Department of Behavioral Sciences, University of Kentucky, Lexington, KY, USA
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|