1
|
Kwan GT, Sanders T, Huang S, Kilaghbian K, Sam C, Wang J, Weihrauch K, Wilson RW, Fangue NA. Impacts of ash-induced environmental alkalinization on fish physiology, and their implications to wildfire-scarred watersheds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176040. [PMID: 39245385 DOI: 10.1016/j.scitotenv.2024.176040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/04/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Changes in land use, a warming climate and increased drought have amplified wildfire frequency and magnitude globally. Subsequent rainfall in wildfire-scarred watersheds washes ash into aquatic systems, increasing water pH and exposing organisms to environmental alkalinization. In this study, 15 or 20 °C-acclimated Chinook salmon (Oncorhynchus tshawytscha) yearlings were exposed to an environmentally-relevant ash concentration (0.25 % w/v), increasing water pH from ∼8.1 to ∼9.2. Salmon experienced significant disturbance to blood plasma pH (pHe) and red blood cell intracellular pH (RBC pHi) within 1 h, but recovered within 24 h. Impacts on plasma ion concentrations were relatively mild, and plasma glucose increased by 2- to 4-fold at both temperatures. Temperature-specific differences were observed: 20 °C salmon recovered their pHe more rapidly, perhaps facilitated by higher basal metabolism and anaerobic metabolic H+ production. Additionally, 20 °C salmon experienced dramatically greater spikes in plasma total ammonia, [NH3] and [NH4+] after 1 h of exposure that decreased over time, whereas 15 °C salmon experienced a gradual nitrogenous waste accumulation. Despite pHe and RBC pHi recovery and non-lethal nitrogenous waste levels, we observed 20 % and 33 % mortality in 15 and 20 °C treatments within 12 h of exposure, respectively. The mortalities cannot be explained by high water pH alone, nor was it likely to be singularly attributable to a heavy metal or organic compound released from ash input. This demonstrates post-wildfire ash input can induce lethal yet previously unexplored physiological disturbances in fish, and further highlights the complex interaction with warmer temperatures typical of wildfire-scarred landscapes.
Collapse
Affiliation(s)
- Garfield T Kwan
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Trystan Sanders
- Biosciences Department, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Sammuel Huang
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Kristen Kilaghbian
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Cameron Sam
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Junhan Wang
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Kelly Weihrauch
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| | - Rod W Wilson
- Biosciences Department, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, United States
| |
Collapse
|
2
|
Negrete B, Ackerly KL, Esbaugh AJ. Hypoxia-acclimation adjusts skeletal muscle anaerobic metabolism and burst swim performance in a marine fish. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111734. [PMID: 39216551 DOI: 10.1016/j.cbpa.2024.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Red drum, Sciaenops ocellatus, are a marine teleost native to the Gulf of Mexico that routinely experiences periods of low oxygen (hypoxia). Recent work has demonstrated this species has the capacity to improve aerobic performance in hypoxia through respiratory acclimation. However, it remains unknown how hypoxia acclimation impacts anaerobic metabolism in red drum, and the consequences of exhaustive exercise and recovery. Juvenile fish were acclimated to normoxia (n = 15, DO 90.4 ± 6.42 %) or hypoxia (n = 15, DO 33.6 ± 7.2 %) for 8 days then sampled at three time points: at rest, after exercise, and after a 3 h recovery period. The resting time point was used to characterize the acclimated phenotype, while the remaining time points demonstrate how this phenotype responds to exhaustive exercise. Whole blood, red muscle, white muscle, and heart tissues were sampled for metabolites and enzyme activity. The resting phenotype was characterized by lower pHe and changes to skeletal muscle ATP. Exhaustive exercise increased muscle lactate, and decreased phosphocreatine and ATP with no effect of acclimation. Interestingly, hypoxia-acclimated fish had higher pHe and pHi than control in all exercise time points. Red muscle ATP was lower in hypoxia-acclimated fish versus control at each sample period. Moreover, acclimated fish increased lactate dehydrogenase activity in the red muscle. Hypoxia acclimation increased white muscle ATP and hexokinase activity, a glycolytic enzyme. In a gait-transition swim test, hypoxia-acclimated fish recruited anaerobic-powered burst swimming at lower speeds in normoxia compared to control fish. These data suggest that acclimation increases reliance on anaerobic metabolism, and does not benefit recovery from exhaustive exercise.
Collapse
Affiliation(s)
- Benjamin Negrete
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA; Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Kerri Lynn Ackerly
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA. https://twitter.com/KerriAckerlyPhD
| | - Andrew J Esbaugh
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| |
Collapse
|
3
|
Thi Hong Gam L, Montgomery DW, Laronde DS, Mackinnon R, Richards JG, Brauner CJ. Acute freshwater CO 2 exposure does not impair seawater transfer in three different sizes of Atlantic salmon (Salmo salar) subjected to different photoperiod manipulations. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39377470 DOI: 10.1111/jfb.15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 07/11/2024] [Accepted: 09/15/2024] [Indexed: 10/09/2024]
Abstract
There is a growing interest in Atlantic salmon (Salmo salar) aquaculture to extend the time fish are reared in freshwater (FW) recirculating aquaculture systems (RAS), producing larger FW salmon that can then be induced to undergo smoltification before transfer into marine net pens for grow-out and harvest. Smolts can be produced by photoperiod (PT) manipulation in RASs, but little is known about how delaying smoltification to larger body sizes affects susceptibility to elevated CO2 levels (hypercapnia), which can occur at high stocking densities in FW RAS or during transport from FW RAS rearing facilities to marine net pens. To address this, Atlantic salmon were reared from hatch to one of three different sizes (~230, ~580, or ~1300 g) in FW (3 ppt) under continuous light (24:0, light:dark). Once fish reached the desired sizes, a group of salmon were maintained on continuous light 24L:0D to serve as a control salmon. A second group of salmon were exposed to 8 weeks of 12L:12D and then to 4 weeks of 24L:0D to serve as PT treatment salmon, which is the PT manipulation commonly used in Atlantic salmon aquaculture to induce smoltification. At the end of PT manipulation, both control and PT treatment salmon were exposed to 0% or 1.5% CO2 (30 mg/L) for 96 h in FW and then transferred to air-equilibrated seawater (SW, 35 ppt, normocapnia). Salmon were sampled at the end of the 96-h FW CO2 exposure and at 24 h and 7 days in SW for measurements of blood ion/acid-base status, muscle water content (MWC), and gill and kidney Na+/K+ ATPase (NKA) activity. Exposure to 96 h of CO2 in FW resulted in acid-base disturbances in fish from all three size classes, with decreases in blood pH and increases in blood PCO2 and plasma [HCO3 -] but no mortality. Despite these large acid-base disturbances in FW, after transfer to normocapnic SW, there were no significant effects of CO2 exposure on extracellular blood pH, intracellular red blood cell pH, or plasma osmoregulatory status for all three sizes of post-smolt salmon. In general, SW transfer was associated with significant increases in plasma ions and osmolality, as well as gill and kidney NKA activity after 24 h and 1 week in SW with no significant impacts between different sizes of salmon. Thus, exposure to 30 mg CO2/L that mimics levels experienced during transport from FW RAS to an SW transfer site may have minimal effects on Atlantic salmon smolts up to 1300 g.
Collapse
Affiliation(s)
- Le Thi Hong Gam
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel W Montgomery
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel S Laronde
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachael Mackinnon
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey G Richards
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Nuic B, Bowden A, Franklin CE, Cramp RL. Atlantic salmon Salmo salar do not prioritize digestion when energetic budgets are constrained by warming and hypoxia. JOURNAL OF FISH BIOLOGY 2024; 104:1718-1731. [PMID: 38426401 DOI: 10.1111/jfb.15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
During summer, farmed Atlantic salmon (Salmo salar) can experience prolonged periods of warming and low aquatic oxygen levels due to climate change. This often results in a drop in feed intake; however, the physiological mechanism behind this behaviour is unclear. Digestion is a metabolically expensive process that can demand a high proportion of an animal's energy budget and might not be sustainable under future warming scenarios. We investigated the effects of elevated temperature and acute hypoxia on specific dynamic action (SDA; the energetic cost of digestion), and how much of the energy budget (i.e. aerobic scope, AS) was occupied by SDA in juvenile Atlantic salmon. AS was 9% lower in 21°C-acclimated fish compared to fish reared at their optimum temperature (15°C) and was reduced by ~50% by acute hypoxia (50% air saturation) at both temperatures. Furthermore, we observed an increase in peak oxygen uptake rate during digestion which occupied ~13% of the AS at 15°C and ~20% of AS at 21°C, and increased the total cost of digestion at 21°C. The minimum oxygen tolerance threshold in digesting fish was ~42% and ~53% at 15 and 21°C, respectively, and when digesting fish were exposed to acute hypoxia, gut transit was delayed. Thus, these stressors result in a greater proportion of the available energy budget being directed away from digestion. Moderate environmental hypoxia under both optimal and high temperatures severely impedes digestion and should be avoided to limit exacerbating temperature effects on fish growth.
Collapse
Affiliation(s)
- Barbara Nuic
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Alyssa Bowden
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca L Cramp
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Montgomery DW, Finlay J, Simpson SD, Engelhard GH, Birchenough SNR, Wilson RW. Respiratory acidosis and O 2 supply capacity do not affect the acute temperature tolerance of rainbow trout ( Oncorhynchus mykiss). CONSERVATION PHYSIOLOGY 2024; 12:coae026. [PMID: 38779432 PMCID: PMC11109029 DOI: 10.1093/conphys/coae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
The mechanisms that determine the temperature tolerances of fish are poorly understood, creating barriers to disentangle how additional environmental challenges-such as CO2-induced aquatic acidification and fluctuating oxygen availability-may exacerbate vulnerability to a warming climate and extreme heat events. Here, we explored whether two acute exposures (~0.5 hours or ~72 hours) to increased CO2 impact acute temperature tolerance limits in a freshwater fish, rainbow trout (Oncorhynchus mykiss). We separated the potential effects of acute high CO2 exposure on critical thermal maximum (CTmax), caused via either respiratory acidosis (reduced internal pH) or O2 supply capacity (aerobic scope), by exposing rainbow trout to ~1 kPa CO2 (~1% or 10 000 μatm) in combination with normoxia or hyperoxia (~21 or 42 kPa O2, respectively). In normoxia, acute exposure to high CO2 caused a large acidosis in trout (blood pH decreased by 0.43 units), while a combination of hyperoxia and ~1 kPa CO2 increased the aerobic scope of trout by 28%. Despite large changes in blood pH and aerobic scope between treatments, we observed no impacts on the CTmax of trout. Our results suggest that the mechanisms that determine the maximum temperature tolerance of trout are independent of blood acid-base balance or the capacity to deliver O2 to tissues.
Collapse
Affiliation(s)
| | - Jennifer Finlay
- Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Stephen D Simpson
- Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Georg H Engelhard
- International Marine Climate Change Centre (iMC3), Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT, UK
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Silvana N R Birchenough
- International Marine Climate Change Centre (iMC3), Centre for Environment, Fisheries & Aquaculture Science (Cefas), Pakefield Road, Lowestoft, NR33 0HT, UK
| | - Rod W Wilson
- Biosciences, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| |
Collapse
|