1
|
Rosati D, Palmieri M, Brunelli G, Morrione A, Iannelli F, Frullanti E, Giordano A. Differential gene expression analysis pipelines and bioinformatic tools for the identification of specific biomarkers: A review. Comput Struct Biotechnol J 2024; 23:1154-1168. [PMID: 38510977 PMCID: PMC10951429 DOI: 10.1016/j.csbj.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
In recent years, the role of bioinformatics and computational biology together with omics techniques and transcriptomics has gained tremendous importance in biomedicine and healthcare, particularly for the identification of biomarkers for precision medicine and drug discovery. Differential gene expression (DGE) analysis is one of the most used techniques for RNA-sequencing (RNA-seq) data analysis. This tool, which is typically used in various RNA-seq data processing applications, allows the identification of differentially expressed genes across two or more sample sets. Functional enrichment analyses can then be performed to annotate and contextualize the resulting gene lists. These studies provide valuable information about disease-causing biological processes and can help in identifying molecular targets for novel therapies. This review focuses on differential gene expression (DGE) analysis pipelines and bioinformatic techniques commonly used to identify specific biomarkers and discuss the advantages and disadvantages of these techniques.
Collapse
Affiliation(s)
- Diletta Rosati
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Cancer Genomics & Systems Biology Lab, Dept. of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Maria Palmieri
- Cancer Genomics & Systems Biology Lab, Dept. of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Giulia Brunelli
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisa Frullanti
- Cancer Genomics & Systems Biology Lab, Dept. of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Italy
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
Hasanabadi S, Aghamiri SMR, Abin AA, Abdollahi H, Arabi H, Zaidi H. Enhancing Lymphoma Diagnosis, Treatment, and Follow-Up Using 18F-FDG PET/CT Imaging: Contribution of Artificial Intelligence and Radiomics Analysis. Cancers (Basel) 2024; 16:3511. [PMID: 39456604 PMCID: PMC11505665 DOI: 10.3390/cancers16203511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Lymphoma, encompassing a wide spectrum of immune system malignancies, presents significant complexities in its early detection, management, and prognosis assessment since it can mimic post-infectious/inflammatory diseases. The heterogeneous nature of lymphoma makes it challenging to definitively pinpoint valuable biomarkers for predicting tumor biology and selecting the most effective treatment strategies. Although molecular imaging modalities, such as positron emission tomography/computed tomography (PET/CT), specifically 18F-FDG PET/CT, hold significant importance in the diagnosis of lymphoma, prognostication, and assessment of treatment response, they still face significant challenges. Over the past few years, radiomics and artificial intelligence (AI) have surfaced as valuable tools for detecting subtle features within medical images that may not be easily discerned by visual assessment. The rapid expansion of AI and its application in medicine/radiomics is opening up new opportunities in the nuclear medicine field. Radiomics and AI capabilities seem to hold promise across various clinical scenarios related to lymphoma. Nevertheless, the need for more extensive prospective trials is evident to substantiate their reliability and standardize their applications. This review aims to provide a comprehensive perspective on the current literature regarding the application of AI and radiomics applied/extracted on/from 18F-FDG PET/CT in the management of lymphoma patients.
Collapse
Affiliation(s)
- Setareh Hasanabadi
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Seyed Mahmud Reza Aghamiri
- Department of Medical Radiation Engineering, Shahid Beheshti University, Tehran 1983969411, Iran; (S.H.); (S.M.R.A.)
| | - Ahmad Ali Abin
- Faculty of Computer Science and Engineering, Shahid Beheshti University, Tehran 1983969411, Iran;
| | - Hamid Abdollahi
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada;
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211 Geneva, Switzerland;
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
- Department of Nuclear Medicine, University of Southern Denmark, 500 Odense, Denmark
- University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| |
Collapse
|
3
|
Qian C, Jiang C, Xie K, Ding C, Teng Y, Sun J, Gao L, Zhou Z, Ni X. Prognosis Prediction of Diffuse Large B-Cell Lymphoma in 18F-FDG PET Images Based on Multi-Deep-Learning Models. IEEE J Biomed Health Inform 2024; 28:4010-4023. [PMID: 38635387 DOI: 10.1109/jbhi.2024.3390804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL), a cancer of B cells, has been one of the most challenging and complicated diseases because of its considerable variation in clinical behavior, response to therapy, and prognosis. Radiomic features from medical images, such as PET images, have become one of the most valuable features for disease classification or prognosis prediction using learning-based methods. In this paper, a new flexible ensemble deep learning model is proposed for the prognosis prediction of the DLBCL in 18F-FDG PET images. This study proposes the multi-R-signature construction through selected pre-trained deep learning models for predicting progression-free survival (PFS) and overall survival (OS). The proposed method is trained and validated on two datasets from different imaging centers. Through analyzing and comparing the results, the prediction models, including Age, Ann abor stage, Bulky disease, SUVmax, TMTV, and multi-R-signature, achieve the almost best PFS prediction performance (C-index: 0.770, 95% CI: 0.705-0.834, with feature adding fusion method and C-index: 0.764, 95% CI: 0.695-0.832, with feature concatenate fusion method) and OS prediction (C-index: 0.770 (0.692-0.848) and 0.771 (0.694-0.849)) on the validation dataset. The developed multiparametric model could achieve accurate survival risk stratification of DLBCL patients. The outcomes of this study will be helpful for the early identification of high-risk DLBCL patients with refractory relapses and for guiding individualized treatment strategies.
Collapse
|
4
|
Majd E, Xing L, Zhang X. Segmentation of patients with small cell lung cancer into responders and non-responders using the optimal cross-validation technique. BMC Med Res Methodol 2024; 24:83. [PMID: 38589775 PMCID: PMC11000309 DOI: 10.1186/s12874-024-02185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND The timing of treating cancer patients is an essential factor in the efficacy of treatment. So, patients who will not respond to current therapy should receive a different treatment as early as possible. Machine learning models can be built to classify responders and nonresponders. Such classification models predict the probability of a patient being a responder. Most methods use a probability threshold of 0.5 to convert the probabilities into binary group membership. However, the cutoff of 0.5 is not always the optimal choice. METHODS In this study, we propose a novel data-driven approach to select a better cutoff value based on the optimal cross-validation technique. To illustrate our novel method, we applied it to three clinical trial datasets of small-cell lung cancer patients. We used two different datasets to build a scoring system to segment patients. Then the models were applied to segment patients into the test data. RESULTS We found that, in test data, the predicted responders and non-responders had significantly different long-term survival outcomes. Our proposed novel method segments patients better than the standard approach using a cutoff of 0.5. Comparing clinical outcomes of responders versus non-responders, our novel method had a p-value of 0.009 with a hazard ratio of 0.668 for grouping patients using the Cox proportion hazard model and a p-value of 0.011 using the accelerated failure time model which approved a significant difference between responders and non-responders. In contrast, the standard approach had a p-value of 0.194 with a hazard ratio of 0.823 using the Cox proportion hazard model and a p-value of 0.240 using the accelerated failure time model indicating the responders and non-responders do not differ significantly in survival. CONCLUSION In summary, our novel prediction method can successfully segment new patients into responders and non-responders. Clinicians can use our prediction to decide if a patient should receive a different treatment or stay with the current treatment.
Collapse
Affiliation(s)
- Elham Majd
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Li Xing
- Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xuekui Zhang
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
5
|
Rogasch JMM, Shi K, Kersting D, Seifert R. Methodological evaluation of original articles on radiomics and machine learning for outcome prediction based on positron emission tomography (PET). Nuklearmedizin 2023; 62:361-369. [PMID: 37995708 PMCID: PMC10667066 DOI: 10.1055/a-2198-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
AIM Despite a vast number of articles on radiomics and machine learning in positron emission tomography (PET) imaging, clinical applicability remains limited, partly owing to poor methodological quality. We therefore systematically investigated the methodology described in publications on radiomics and machine learning for PET-based outcome prediction. METHODS A systematic search for original articles was run on PubMed. All articles were rated according to 17 criteria proposed by the authors. Criteria with >2 rating categories were binarized into "adequate" or "inadequate". The association between the number of "adequate" criteria per article and the date of publication was examined. RESULTS One hundred articles were identified (published between 07/2017 and 09/2023). The median proportion of articles per criterion that were rated "adequate" was 65% (range: 23-98%). Nineteen articles (19%) mentioned neither a test cohort nor cross-validation to separate training from testing. The median number of criteria with an "adequate" rating per article was 12.5 out of 17 (range, 4-17), and this did not increase with later dates of publication (Spearman's rho, 0.094; p = 0.35). In 22 articles (22%), less than half of the items were rated "adequate". Only 8% of articles published the source code, and 10% made the dataset openly available. CONCLUSION Among the articles investigated, methodological weaknesses have been identified, and the degree of compliance with recommendations on methodological quality and reporting shows potential for improvement. Better adherence to established guidelines could increase the clinical significance of radiomics and machine learning for PET-based outcome prediction and finally lead to the widespread use in routine clinical practice.
Collapse
Affiliation(s)
- Julian Manuel Michael Rogasch
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital University Hospital Bern, Bern, Switzerland
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
6
|
Jiang C, Qian C, Jiang Z, Teng Y, Lai R, Sun Y, Ni X, Ding C, Xu Y, Tian R. Robust deep learning-based PET prognostic imaging biomarker for DLBCL patients: a multicenter study. Eur J Nucl Med Mol Imaging 2023; 50:3949-3960. [PMID: 37606859 DOI: 10.1007/s00259-023-06405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE To develop and independently externally validate robust prognostic imaging biomarkers distilled from PET images using deep learning techniques for precise survival prediction in patients with diffuse large B cell lymphoma (DLBCL). METHODS A total of 684 DLBCL patients from three independent medical centers were included in this retrospective study. Deep learning scores (DLS) were generated from PET images using deep convolutional neural network architecture known as VGG19 and DenseNet121. These DLSs were utilized to predict progression-free survival (PFS) and overall survival (OS). Furthermore, multiparametric models were designed based on results from the Cox proportional hazards model and assessed through calibration curves, concordance index (C-index), and decision curve analysis (DCA) in the training and validation cohorts. RESULTS The DLSPFS and DLSOS exhibited significant associations with PFS and OS, respectively (P<0.05) in the training and validation cohorts. The multiparametric models that incorporated DLSs demonstrated superior efficacy in predicting PFS (C-index: 0.866) and OS (C-index: 0.835) compared to competing models in training cohorts. In external validation cohorts, the C-indices for PFS and OS were 0.760 and. 0.770 and 0.748 and 0.766, respectively, indicating the reliable validity of the multiparametric models. The calibration curves displayed good consistency, and the decision curve analysis (DCA) confirmed that the multiparametric models offered more net clinical benefits. CONCLUSIONS The DLSs were identified as robust prognostic imaging biomarkers for survival in DLBCL patients. Moreover, the multiparametric models developed in this study exhibited promising potential in accurately stratifying patients based on their survival risk.
Collapse
Affiliation(s)
- Chong Jiang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chunjun Qian
- School of Electrical and Information Engineering, Changzhou Institute of Technology, Changzhou, 213032, Jiangsu, China
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
- Center of Medical Physics, Nanjing Medical University, Changzhou, 213003, China
| | - Zekun Jiang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Teng
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ruihe Lai
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yiwen Sun
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xinye Ni
- The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213003, China
- Center of Medical Physics, Nanjing Medical University, Changzhou, 213003, China
| | - Chongyang Ding
- Department of Nuclear Medicine, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Jiangsu Province, No. 321, Zhongshan Road, Nanjing, 210008, China.
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang City, China
| | - Rong Tian
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
7
|
Zhang H, Xi Q, Zhang F, Li Q, Jiao Z, Ni X. Application of Deep Learning in Cancer Prognosis Prediction Model. Technol Cancer Res Treat 2023; 22:15330338231199287. [PMID: 37709267 PMCID: PMC10503281 DOI: 10.1177/15330338231199287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
As an important branch of artificial intelligence and machine learning, deep learning (DL) has been widely used in various aspects of cancer auxiliary diagnosis, among which cancer prognosis is the most important part. High-accuracy cancer prognosis is beneficial to the clinical management of patients with cancer. Compared with other methods, DL models can significantly improve the accuracy of prediction. Therefore, this article is a systematic review of the latest research on DL in cancer prognosis prediction. First, the data type, construction process, and performance evaluation index of the DL model are introduced in detail. Then, the current mainstream baseline DL cancer prognosis prediction models, namely, deep neural networks, convolutional neural networks, deep belief networks, deep residual networks, and vision transformers, including network architectures, the latest application in cancer prognosis, and their respective characteristics, are discussed. Next, some key factors that affect the predictive performance of the model and common performance enhancement techniques are listed. Finally, the limitations of the DL cancer prognosis prediction model in clinical practice are summarized, and the future research direction is prospected. This article could provide relevant researchers with a comprehensive understanding of DL cancer prognostic models and is expected to promote the research progress of cancer prognosis prediction.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Key Laboratory of Medical Physics in Changzhou, Changzhou, China
| | - Qianyi Xi
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Key Laboratory of Medical Physics in Changzhou, Changzhou, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| | - Fan Zhang
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Key Laboratory of Medical Physics in Changzhou, Changzhou, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| | - Qixuan Li
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Key Laboratory of Medical Physics in Changzhou, Changzhou, China
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| | - Zhuqing Jiao
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, China
| | - Xinye Ni
- Department of Radiotherapy Oncology, Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, China
- Medical Physics Research Center, Nanjing Medical University, Changzhou, China
- Key Laboratory of Medical Physics in Changzhou, Changzhou, China
| |
Collapse
|