1
|
Wang Z, Chen Y, Gong K, Zhao B, Ning Y, Chen M, Li Y, Ali M, Timsina J, Liu M, Cruchaga C, Jia J. Cerebrospinal fluid proteomics identification of biomarkers for amyloid and tau PET stages. Cell Rep Med 2025; 6:102031. [PMID: 40118053 PMCID: PMC12047519 DOI: 10.1016/j.xcrm.2025.102031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/15/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
Accurate staging of Alzheimer's disease (AD) pathology is crucial for therapeutic trials and prognosis, but existing fluid biomarkers lack specificity, especially for assessing tau deposition severity, in amyloid-beta (Aβ)-positive patients. We analyze cerebrospinal fluid (CSF) samples from 136 participants in the Alzheimer's Disease Neuroimaging Initiative using more than 6,000 proteins. We apply machine learning to predict AD pathological stages defined by amyloid and tau positron emission tomography (PET). We identify two distinct protein panels: 16 proteins, including neurofilament heavy chain (NEFH) and SPARC-related modular calcium-binding protein 1 (SMOC1), that distinguished Aβ-negative/tau-negative (A-T-) from A+ individuals and nine proteins, such as HCLS1-associated protein X-1 (HAX1) and glucose-6-phosphate isomerase (GPI), that differentiated A+T+ from A+T- stages. These signatures outperform the established CSF biomarkers (area under the curve [AUC]: 0.92 versus 0.67-0.70) and accurately predicted disease progression over a decade. The findings are validated in both internal and external cohorts. These results underscore the potential of proteomic-based signatures to refine AD diagnostic criteria and improve patient stratification in clinical trials.
Collapse
Affiliation(s)
- Zhibo Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China
| | - Yuhan Chen
- The First Clinical Medical School, Hebei North University, Zhangjiakou 075000, China
| | - Katherine Gong
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Bote Zhao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China
| | - Yuye Ning
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China
| | - Meilin Chen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University, St. Louis, MO, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Hope Center for Neurologic Diseases, Washington University, St. Louis, MO, USA; Knight Alzheimer's Disease Research Center, Washington University, St. Louis, MO, USA.
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing 100053, P.R.China; Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing 100053, P.R.China; Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing 100053, P.R.China; Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, P.R.China; Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, P.R.China.
| |
Collapse
|
2
|
Bouley SJ, Grassetti AV, Allaway RJ, Wood MD, Hou HW, Burdon Dasbach IR, Seibel W, Wu J, Gerber SA, Dragnev KH, Walker JA, Sanchez Y. Chemical genetic screens reveal defective lysosomal trafficking as synthetic lethal with NF1 loss. J Cell Sci 2024; 137:jcs262343. [PMID: 39016685 PMCID: PMC11361638 DOI: 10.1242/jcs.262343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Neurofibromatosis type 1, a genetic disorder caused by pathogenic germline variations in NF1, predisposes individuals to the development of tumors, including cutaneous and plexiform neurofibromas (CNs and PNs), optic gliomas, astrocytomas, juvenile myelomonocytic leukemia, high-grade gliomas and malignant peripheral nerve sheath tumors (MPNSTs), which are chemotherapy- and radiation-resistant sarcomas with poor survival. Loss of NF1 also occurs in sporadic tumors, such as glioblastoma (GBM), melanoma, breast, ovarian and lung cancers. We performed a high-throughput screen for compounds that were synthetic lethal with NF1 loss, which identified several leads, including the small molecule Y102. Treatment of cells with Y102 perturbed autophagy, mitophagy and lysosome positioning in NF1-deficient cells. A dual proteomics approach identified BLOC-one-related complex (BORC), which is required for lysosome positioning and trafficking, as a potential target of Y102. Knockdown of a BORC subunit using siRNA recapitulated the phenotypes observed with Y102 treatment. Our findings demonstrate that BORC might be a promising therapeutic target for NF1-deficient tumors.
Collapse
Affiliation(s)
- Stephanie J. Bouley
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH 03755, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew V. Grassetti
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH 03755, USA
- Department of Biochemistry and Cellular Biology, Geisel School of Medicine, Hanover, NH 03755, USA
| | - Robert J. Allaway
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH 03755, USA
| | - Matthew D. Wood
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Hanover, NH 03755, USA
| | - Helen W. Hou
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Hanover, NH 03755, USA
| | - India R. Burdon Dasbach
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH 03755, USA
| | - William Seibel
- Cincinnati Children's Hospital, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jimmy Wu
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, USA
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH 03755, USA
- Department of Biochemistry and Cellular Biology, Geisel School of Medicine, Hanover, NH 03755, USA
| | - Konstantin H. Dragnev
- Department of Medicine, Geisel School of Medicine, Hanover, NH 03755, USA
- Section of Medical Oncology, Geisel School of Medicine, Hanover, NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - James A. Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yolanda Sanchez
- Department of Molecular and Systems Biology, Geisel School of Medicine, Hanover, NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03766, USA
| |
Collapse
|
3
|
Tang L, Chen D, Yang D, Liu Z, Yang X, Liu Y, Zhang L, Liu Z, Wang Y, Tang Z, Huang Y. Bmpali, Bmb1 and Bmcap are necessary for uric acid granule formation in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 167:104075. [PMID: 38278280 DOI: 10.1016/j.ibmb.2024.104075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Uric acid is the end-product of nitrogen metabolism of the silkworm and other lepidopterans. The accumulation of uric acid particles in the epidermis causes the larval silkworm to appear white and opaque. However, the mechanism of uric acid granule formation is still unclear. Silkworm epidermis color is linked to the genes responsible for uric acid particle formation. We first identified two genes in the Bombyx mori genome that encode subunits of the Bloc-1 (Biogenesis of Lysosome-related Organelles Complex-1) by homology to these genes in other eukaryotes, Bmpali and Bmb1. Mutation in these genes caused a transparent phenotype in the silkworm larvae, and the loss of BmBloc-1 subunit gene Bmcap resulted in the same phenotype. These three genes are highly conserved between human and silkworm. We discovered that Bmpali, Bmcap, and Bmb1 localize in the cytoplasm of BmN cells. Yeast two-hybrid assays demonstrated that the Bmpali physically interacts with both Bmcap and Bmb1. Investigating the roles of Bmpali, Bmb1, and Bmcap is essential for uric acid granule formation understanding in Bombyx mori. These mutants present a valuable silkworm model for studying the biogenesis of lysosome-related organelles (LROs).
Collapse
Affiliation(s)
- Linmeng Tang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China; Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Dongbin Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Dehong Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Liu
- Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Yang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yujia Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liying Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zulian Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yaohui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Tang
- Departments of Neonatology, International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yongping Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|