1
|
Halloran KM, Saadat N, Pallas B, Vyas AK, Padmanabhan V. Exploratory analysis of differences at the transcriptional interface between the maternal and fetal compartments of the sheep placenta and potential influence of fetal sex. Mol Cell Endocrinol 2025; 603:112546. [PMID: 40222550 DOI: 10.1016/j.mce.2025.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025]
Abstract
An understanding of the inner workings of the placenta is imperative to elucidate how the maternal and fetal compartments coordinate to mediate fetal development. The two compartments can be separated and studied before term in sheep, a feat not possible in humans, thus providing a valuable translational model. This study investigated differential expression of gene signaling networks in the maternal and fetal compartments of the placenta and explored the potential influence of fetal sex. On approximately gestational day 120 (term: 147 days), ewes were euthanized and fetuses removed and sexed. Placentomes [n = 5 male, n = 3 female] were collected, and caruncles (maternal) and cotyledons (fetal) were separated and sequenced to assess RNA expression. Analysis revealed 2627 differentially expressed genes (FDR<0.01, abslog2FC ≥ 2) contributing to key transcriptional differences between maternal and fetal compartments, which suggested that the maternal compartment drives extracellular signaling at the interface whereas the fetal compartment controls internal mechanisms crucial for fetal-placental development. X-chromosome inactivation equalized expression of a vast majority of X-linked genes in the fetal compartment. Additionally, the female placenta had more fine-tuned regulation of key pathways for fetal-placental development, such as DNA replication, mRNA surveillance, and RNA transport, compared to males, which had enrichment of metabolic pathways including TCA cycle and galactose metabolism. These findings, in addition to supporting differences in expression in the maternal and fetal placental compartments and the possible influence of fetal sex, offer a transcriptional platform to compare placental perturbations that occur at the maternal-fetal interface that contribute to adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Arpita K Vyas
- Department of Pediatrics, Washington University St. Louis, MO, USA
| | | |
Collapse
|
2
|
Zadmajid V, Shahriar S, Gorelick DA. Testosterone acts through the membrane protein GPRC6A to cause cardiac edema in zebrafish embryos. Development 2024; 151:dev204390. [PMID: 39479956 PMCID: PMC11634029 DOI: 10.1242/dev.204390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 11/02/2024]
Abstract
Androgens are classically thought to act through intracellular androgen receptors (AR/NR3C4), but they can also trigger non-genomic effects via membrane proteins. Although several membrane androgen receptors have been characterized in vitro, their functions in vivo remain unclear. Using a chemical-genetic screen in zebrafish, we found that GPRC6A, a G-protein-coupled receptor, mediates non-genomic androgen actions during embryonic development. Exposure to androgens (androstanedione, DHT and testosterone) caused cardiac edema or tail curvature in wild-type embryos, as well as in ar mutants, suggesting AR-independent pathways. We then mutated putative membrane androgen receptors [gprc6a, hcar1-4 and zip9 (slc39a9)] and found that only gprc6a mutants exhibited a significant reduction in cardiac edema after testosterone exposure. Additionally, co-treatment of wild-type embryos with testosterone and GPRC6A antagonists significantly suppressed the cardiac edema phenotype. Using RNA-seq and RNA rescue approaches, we found that testosterone and GPRC6A cause cardiac phenotypes by reducing Pak1 signaling. Our results indicate that testosterone induces cardiac edema in zebrafish embryos through GPRC6A, independent of nuclear androgen receptors, highlighting a previously unappreciated non-genomic androgen signaling pathway in embryonic development.
Collapse
MESH Headings
- Animals
- Zebrafish/embryology
- Zebrafish/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Testosterone/metabolism
- Testosterone/pharmacology
- Zebrafish Proteins/metabolism
- Zebrafish Proteins/genetics
- Edema, Cardiac/metabolism
- Edema, Cardiac/pathology
- Edema, Cardiac/genetics
- Embryo, Nonmammalian/metabolism
- Embryo, Nonmammalian/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
- Signal Transduction/drug effects
- Gene Expression Regulation, Developmental/drug effects
- Heart/embryology
- Heart/drug effects
- Androgens/pharmacology
- Androgens/metabolism
- Mutation/genetics
Collapse
Affiliation(s)
- Vahid Zadmajid
- Center for Precision Environmental Health, Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, BCM229, Houston, TX 77030, USA
| | - Shayan Shahriar
- Center for Precision Environmental Health, Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, BCM229, Houston, TX 77030, USA
| | - Daniel A. Gorelick
- Center for Precision Environmental Health, Department of Molecular & Cellular Biology, Baylor College of Medicine, One Baylor Plaza, BCM229, Houston, TX 77030, USA
| |
Collapse
|
3
|
Chen X, Huang S, Wang L, Liu K, Wu H. Maternal exposure to polystyrene nanoplastics induces sex-specific cardiotoxicity in offspring mice. Heliyon 2024; 10:e39139. [PMID: 39640785 PMCID: PMC11620075 DOI: 10.1016/j.heliyon.2024.e39139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Globally, plastic pollution threatens human health, particularly affecting the hearts of offspring exposed to maternal environmental factors early in development. Few studies have specifically addressed sex-specific cardiac injury in offspring resulting from maternal exposure to polystyrene nanoplastics (PS-NPs). This study investigates the potential cardiac injury in offspring following maternal exposure to 1 mg/L PS-NPs. Pregnant C57BL/6J mice were exposed to PS-NPs until 3 weeks postpartum to establish a maternal exposure model. Heart tissues were collected and weighed, and the transcriptomes of the offspring hearts were sequenced and analyzed using high-throughput RNA sequencing. Immunohistochemical staining was performed to assess the effects of PS-NPs on cardiac immune infiltration, fibrosis, and apoptosis in the offspring. PS-NPs caused a significant reduction in heart and body weight in female offspring compared to males. Additionally, PS-NPs induced sex-specific transcriptional reprogramming and metabolic disruptions in the offspring. PS-NPs also induced significant fibrosis, apoptosis, and increased CD68+ macrophage infiltration in offspring hearts. Notably, PS-NPs induced distinct cardiovascular diseases in the offspring. Fluid shear stress and atherosclerosis were significantly enriched in PS-NP-treated male offspring, while viral myocarditis was predominantly enriched in PS-NP-treated females. Our findings suggest that PS-NPs induce cardiotoxicity in offspring by disrupting metabolism, impairing immunity, and triggering fibrosis and apoptosis, with sex-specific differences. This study provides novel insights and a foundation for understanding sex-specific pharmacological differences and interventions in PS-NP-induced cardiovascular disease in offspring.
Collapse
Affiliation(s)
- Xiuli Chen
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan, 450003, China
| | - Shenzhen Huang
- Henan Eye Institute, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Li Wang
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan, 450003, China
| | - Kan Liu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan, 450003, China
| | - Haiying Wu
- Department of Gynecology and Obstetrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine of Henan University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
4
|
Halloran KM, Saadat N, Pallas B, Vyas AK, Sargis R, Padmanabhan V. Developmental programming: Testosterone excess masculinizes female pancreatic transcriptome and function in sheep. Mol Cell Endocrinol 2024; 588:112234. [PMID: 38588858 PMCID: PMC11231987 DOI: 10.1016/j.mce.2024.112234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Hyperandrogenic disorders, such as polycystic ovary syndrome, are often associated with metabolic disruptions such as insulin resistance and hyperinsulinemia. Studies in sheep, a precocial model of translational relevance, provide evidence that in utero exposure to excess testosterone during days 30-90 of gestation (the sexually dimorphic window where males naturally experience elevated androgens) programs insulin resistance and hyperinsulinemia in female offspring. Extending earlier findings that adverse effects of testosterone excess are evident in fetal day 90 pancreas, the end of testosterone treatment, the present study provides evidence that transcriptomic and phenotypic effects of in utero testosterone excess on female pancreas persist after cessation of treatment, suggesting lasting organizational changes, and induce a male-like phenotype in female pancreas. These findings demonstrate that the female pancreas is susceptible to programmed masculinization during the sexually dimorphic window of fetal development and shed light on underlying connections between hyperandrogenism and metabolic homeostasis.
Collapse
Affiliation(s)
| | - Nadia Saadat
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Brooke Pallas
- Unit Lab Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Arpita K Vyas
- Department of Pediatrics, Washington University, St. Louis, MO, USA
| | - Robert Sargis
- Department of Medicine, University of Illinois, Chicago, IL, USA
| | | |
Collapse
|
5
|
Saadat N, Pallas B, Ciarelli J, Vyas AK, Padmanabhan V. Gestational testosterone excess early to mid-pregnancy disrupts maternal lipid homeostasis and activates biosynthesis of phosphoinositides and phosphatidylethanolamines in sheep. Sci Rep 2024; 14:6230. [PMID: 38486090 PMCID: PMC10940674 DOI: 10.1038/s41598-024-56886-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Gestational hyperandrogenism is a risk factor for adverse maternal and offspring outcomes with effects likely mediated in part via disruptions in maternal lipid homeostasis. Using a translationally relevant sheep model of gestational testosterone (T) excess that manifests maternal hyperinsulinemia, intrauterine growth restriction (IUGR), and adverse offspring cardiometabolic outcomes, we tested if gestational T excess disrupts maternal lipidome. Dimensionality reduction models following shotgun lipidomics of gestational day 127.1 ± 5.3 (term 147 days) plasma revealed clear differences between control and T-treated sheep. Lipid signatures of gestational T-treated sheep included higher phosphoinositides (PI 36:2, 39:4) and lower acylcarnitines (CAR 16:0, 18:0, 18:1), phosphatidylcholines (PC 38:4, 40:5) and fatty acids (linoleic, arachidonic, Oleic). Gestational T excess activated phosphatidylethanolamines (PE) and PI biosynthesis. The reduction in key fatty acids may underlie IUGR and activated PI for the maternal hyperinsulinemia evidenced in this model. Maternal circulatory lipids contributing to adverse cardiometabolic outcomes are modifiable by dietary interventions.
Collapse
Affiliation(s)
- Nadia Saadat
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA
| | - Brooke Pallas
- Unit Lab Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Joseph Ciarelli
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA
| | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University St. Louis, St. Louis, MO, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, 7510 MSRB, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 148019-5718, USA.
| |
Collapse
|