1
|
Cui Z, Wang P, Gao W. Microbial dysbiosis in periodontitis and peri-implantitis: pathogenesis, immune responses, and therapeutic. Front Cell Infect Microbiol 2025; 15:1517154. [PMID: 40007610 PMCID: PMC11850578 DOI: 10.3389/fcimb.2025.1517154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The oral microbiome comprises over 700 distinct species, forming complex biofilms essential for maintaining oral and systemic health. When the microbial homeostasis in the periodontium is disrupted, pathogens within the biofilm can cause periodontitis and peri-implantitis, inducing host immune responses. Understanding the role of microbial communities and the immune mechanisms in oral health and disease is crucial for developing improved preventive, diagnostic and therapeutic strategies. However, many questions remain about how changes in bacterial populations contribute to the development and progression of these conditions. An electronic and manual literature search was conducted using PubMed, Excerpta Medica, Frontiers Reports and the Wiley Online Library databases for relevant articles. Data from these publications were extracted and the overall findings were summarized in a narrative manner. The variations in microbial communities and immune responses of periodontitis and peri-implantitis are explored. Dysbiosis of the subgingival microbiome-characterized by an increase in pathogenic bacteria such as Porphyromonas gingivalis, Tannerella forsythia, and Aggregatibacter actinomycetemcomitans-plays a pivotal role in the initiation and progression of periodontitis. As for peri-implantitis, alterations include a higher abundance of opportunistic pathogens and reduced microbial diversity around implants. Moreover, oral dysbiosis potentially influencing systemic health through immune-mediated pathways. Regional immunity of periodontium involving neutrophils, T helper cells-17, and immune-related cytokines is crucial for maintaining periodontal homeostasis and responding to microbial imbalances. Additionally, the impact of non-mechanical treatments-such as probiotics and laser therapy-on the oral microbiome is discussed, demonstrating their potential in managing microbial dysbiosis. These findings underscore that bacterial dysbiosis is a central factor in the development of periodontitis and peri-implantitis. Maintaining microbial balance is essential for preventing these diseases, and interventions targeting the microbiome could enhance treatment outcomes. Strategies focusing on controlling pathogenic bacteria, modulating immune responses, and promoting tissue regeneration are key to restoring periodontal stability. Further research is needed to clarify the mechanisms underlying the transition from peri-implant mucositis to peri-implantitis and to optimize prevention and treatment approaches, considering the complex interactions between the microbiome and host immunity.
Collapse
Affiliation(s)
| | | | - Weiyue Gao
- Stomatology Center, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Zielinski J, Corby P, Alekseyenko AV. MD3F: Multivariate Distance Drift Diffusion Framework for High-Dimensional Datasets. Genes (Basel) 2024; 15:582. [PMID: 38790211 PMCID: PMC11120789 DOI: 10.3390/genes15050582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
High-dimensional biomedical datasets have become easier to collect in the last two decades with the advent of multi-omic and single-cell experiments. These can generate over 1000 measurements per sample or per cell. More recently, focus has been drawn toward the need for longitudinal datasets, with the appreciation that important dynamic changes occur along transitions between health and disease. Analysis of longitudinal omics data comes with many challenges, including type I error inflation and corresponding loss in power when thousands of hypothesis tests are needed. Multivariate analysis can yield approaches with higher statistical power; however, multivariate methods for longitudinal data are currently limited. We propose a multivariate distance-based drift-diffusion framework (MD3F) to tackle the need for a multivariate approach to longitudinal, high-throughput datasets. We show that MD3F can result in surprisingly simple yet valid and powerful hypothesis testing and estimation approaches using generalized linear models. Through simulation and application studies, we show that MD3F is robust and can offer a broadly applicable method for assessing multivariate dynamics in omics data.
Collapse
Affiliation(s)
- Jessica Zielinski
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Patricia Corby
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Alexander V. Alekseyenko
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA;
- Biomedical Informatics Center, Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Liu W, Yu W, Zhou L, Ling D, Xu Y, He F. Inhibition of ZDHHC16 promoted osteogenic differentiation and reduced ferroptosis of dental pulp stem cells by CREB. BMC Oral Health 2024; 24:388. [DOI: https:/doi.org/10.1186/s12903-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2025] Open
Abstract
Abstract
Background
The repair of bone defects caused by periodontal diseases is a difficult challenge in clinical treatment. Dental pulp stem cells (DPSCs) are widely studied for alveolar bone repair. The current investigation aimed to examine the specific mechanisms underlying the role of Zinc finger DHHC-type palmitoyl transferases 16 (ZDHHC16) in the process of osteogenic differentiation (OD) of DPSCs.
Methods
The lentiviral vectors ZDHHC16 or si-ZDHHC16 were introduced in the DPSCs and then the cells were induced by an odontogenic medium for 21 days. Subsequently, Quantitate Polymerase Chain Reaction (PCR), immunofluorescent staining, proliferation assay, ethynyl deoxyuridine (EdU) staining, and western blot analysis were used to investigate the specific details of ZDHHC16 contribution in OD of DPSCs.
Results
Our findings indicate that ZDHHC16 exhibited a suppressive effect on cellular proliferation and oxidative phosphorylation, while concurrently inducing ferroptosis in DPSCs. Moreover, the inhibition of ZDHHC16 promoted cell development and OD and reduced ferroptosis of DPSCs. The expression of p-CREB was suppressed by ZDHHC16, and immunoprecipitation (IP) analysis revealed that ZDHHC16 protein exhibited interconnection with cAMP-response element binding protein (CREB) of DPSCs. The CREB suppression reduced the impacts of ZDHHC16 on OD and ferroptosis of DPSCs. The activation of CREB also reduced the influences of si-ZDHHC16 on OD and ferroptosis of DPSCs.
Conclusions
These findings provide evidences to support a negative association between ZDHHC16 and OD of DPSCs, which might be mediated by ferroptosis of DPSCs via CREB.
Collapse
|
4
|
Liu W, Yu W, Zhou L, Ling D, Xu Y, He F. Inhibition of ZDHHC16 promoted osteogenic differentiation and reduced ferroptosis of dental pulp stem cells by CREB. BMC Oral Health 2024; 24:388. [PMID: 38532349 PMCID: PMC10964552 DOI: 10.1186/s12903-024-04107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND The repair of bone defects caused by periodontal diseases is a difficult challenge in clinical treatment. Dental pulp stem cells (DPSCs) are widely studied for alveolar bone repair. The current investigation aimed to examine the specific mechanisms underlying the role of Zinc finger DHHC-type palmitoyl transferases 16 (ZDHHC16) in the process of osteogenic differentiation (OD) of DPSCs. METHODS The lentiviral vectors ZDHHC16 or si-ZDHHC16 were introduced in the DPSCs and then the cells were induced by an odontogenic medium for 21 days. Subsequently, Quantitate Polymerase Chain Reaction (PCR), immunofluorescent staining, proliferation assay, ethynyl deoxyuridine (EdU) staining, and western blot analysis were used to investigate the specific details of ZDHHC16 contribution in OD of DPSCs. RESULTS Our findings indicate that ZDHHC16 exhibited a suppressive effect on cellular proliferation and oxidative phosphorylation, while concurrently inducing ferroptosis in DPSCs. Moreover, the inhibition of ZDHHC16 promoted cell development and OD and reduced ferroptosis of DPSCs. The expression of p-CREB was suppressed by ZDHHC16, and immunoprecipitation (IP) analysis revealed that ZDHHC16 protein exhibited interconnection with cAMP-response element binding protein (CREB) of DPSCs. The CREB suppression reduced the impacts of ZDHHC16 on OD and ferroptosis of DPSCs. The activation of CREB also reduced the influences of si-ZDHHC16 on OD and ferroptosis of DPSCs. CONCLUSIONS These findings provide evidences to support a negative association between ZDHHC16 and OD of DPSCs, which might be mediated by ferroptosis of DPSCs via CREB.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
| | - Wenwei Yu
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Lili Zhou
- Department of Oral Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Danhua Ling
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
- Department of General Dentistry, the Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jianghong Road, Hangzhou, Hangzhou, Zhejiang, 310052, China
| | - Yangbo Xu
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China
| | - Fuming He
- Department of Oral Prosthodontics, Stomatology Hospital, School of Stomatology, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Disease, 166 Qiu'tao Road (N), Hangzhou, Zhejiang, 310000, China.
| |
Collapse
|
5
|
Boyapati R, Lanke RB, Mudaliyar MC, Gaddam B, Babu Dasari A, Dhulipalla R. Exploring the Microbiome Landscape of Dental Plaque: A Cross-Sectional Analysis in Periodontal Health and Disease. Cureus 2024; 16:e57334. [PMID: 38690496 PMCID: PMC11060497 DOI: 10.7759/cureus.57334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
OBJECTIVE This study aimed to comprehensively analyze the microbiome of dental plaque in individuals with varying periodontal statuses, encompassing both periodontal health and disease. The primary objectives were to identify microbial markers associated with different clinical conditions, explore variations in microbial diversity, and investigate potential correlations between the oral microbiome and clinical parameters. METHODS A cross-sectional design was employed, involving 164 participants aged 18 to 65 years. Inclusion criteria comprised individuals with good oral and systemic health for the periodontal health group and those diagnosed with various stages of periodontal disease for the periodontal disease group. Dental plaque samples were meticulously collected from diverse tooth surfaces, and clinical examinations were conducted to assess periodontal health status. High-throughput sequencing of the 16S ribosomal RNA (rRNA) gene was utilized for microbiome analysis. RESULTS Demographic characteristics revealed a balanced distribution between the periodontal health and disease groups. Clinical parameters, including probing depth, clinical attachment loss, and bleeding on probing, exhibited significant differences between the two groups (p < 0.001). Microbial diversity indices indicated a higher diversity in the periodontal health group compared to the disease group (p < 0.001). Analysis of relative abundance of bacterial phyla identified significant variations, with Firmicutes, Bacteroidetes, and Actinobacteria showing differential prevalence between health and disease (p < 0.05). Differentially abundant taxa analysis highlighted specific species associated with each clinical condition, including Prevotella intermedia and Porphyromonas gingivalis. Network analysis revealed complex microbial interactions within the oral microbiome. Functional predictions indicated variations in metabolic capabilities between health and disease, with potential implications for virulence and antibiotic resistance. CONCLUSION This study provides a comprehensive analysis of the oral microbiome in periodontal health and disease, revealing significant associations between microbial composition and clinical parameters. The identification of microbial markers and functional insights enhances our understanding of the complex interplay within the oral ecosystem. These findings hold promise for advancing diagnostic and therapeutic approaches tailored to individual microbial profiles.
Collapse
|