1
|
McCorkell G, Piva T, Highgate D, Nakayama M, Geso M. Ultrasound-stimulated microbubbles to enhance radiotherapy: A scoping review. J Med Imaging Radiat Oncol 2024; 68:740-769. [PMID: 39250692 DOI: 10.1111/1754-9485.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024]
Abstract
INTRODUCTION Primarily used as ultrasound contrast agents, microbubbles have recently emerged as a versatile therapeutic vector that can be 'burst' to deliver payloads in the presence of suitably optimised ultrasound fields. Ultrasound-stimulated microbubbles (USMB) have recently demonstrated improvements in treatment outcomes across a variety of clinical applications. This scoping review investigates whether this potential translates into the context of radiation therapy by evaluating the application of this technology across all three phases of radiation action. METHODS Primary research articles, excluding poster presentations and conference proceedings, were identified through systematic searches of the PubMed NCBI/Medline, Embase/OVID, Web of Science and CINAHL/EBSCOhost databases, with additional articles identified via manual Google Scholar searching. Articles were dual screened for inclusion using the Covidence systematic review platform and classified against all three phases of radiation action. RESULTS Overall, 57 eligible publications from a total of 1389 identified articles were included in the review, with studies dating back to 2012. Study heterogeneity prevented formal statistical analysis; however, most articles reported improved outcomes using USMB in the presence of radiation compared to that of radiation alone. These improvements appear to result from the use of USMB as either a biovascular disruptor causing tumour cell damage via indirect mechanisms, or as a localised treatment vector that directly increases tumour cell uptake of other therapeutic and physical agents designed to enhance radiation action. CONCLUSIONS USMB demonstrate exciting potential to enhance the effects of radiation treatments due to their versatility and capacity to target all three phases of radiation action.
Collapse
Affiliation(s)
- Giulia McCorkell
- RMIT University, Melbourne, Victoria, Australia
- The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | - Masao Nakayama
- RMIT University, Melbourne, Victoria, Australia
- Kobe University, Kobe, Hyogo, Japan
- Kita-Harima Medical Center, Ono, Hyogo, Japan
| | - Moshi Geso
- RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Moore-Palhares D, Saifuddin M, Dasgupta A, Anzola Pena ML, Prasla S, Ho L, Lu L, Kung J, Karam I, Poon I, Bayley A, McNabb E, Stanisz G, Kolios M, Czarnota GJ. Radiation enhancement using focussed ultrasound-stimulated microbubbles for head and neck cancer: A phase 1 clinical trial. Radiother Oncol 2024; 198:110380. [PMID: 38879128 DOI: 10.1016/j.radonc.2024.110380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND AND PURPOSE Preclinical research demonstrated that the exposure of microbubbles (intravascular gas microspheres) to focussed ultrasound within the targeted tumour upregulates pro-apoptotic pathways and enhances radiation-induced tumour cell death. This study aimed to assess the safety and efficacy of magnetic resonance (MR)-guided focussed ultrasound-stimulated microbubbles (MRgFUS-MB) for head and neck cancers (HN). MATERIALS AND METHODS This prospective phase 1 clinical trial included patients with newly diagnosed or recurrent HN cancer (except nasopharynx malignancies) for whom locoregional radiotherapy with radical- or palliative-intent as deemed appropriate. Patients with contraindications for microbubble administration or contrast-enhanced MR were excluded. MR-coupled focussed ultrasound sonicated intravenously administered microbubbles within the MR-guided target volume. Patients receiving 5-10 and 33-35 radiation fractions were planned for 2 and 3 MRgFUS-MB treatments, respectively. Primary endpoint was toxicity per CTCAEv5.0. Secondary endpoint was tumour response at 3 months per RECIST 1.1 criteria. RESULTS Twelve patients were enrolled between Jun/2020 and Nov/2023, but 1 withdrew consent. Eleven patients were included in safety analysis. Median follow-up was 7 months (range, 0.3-38). Most patients had oropharyngeal cancer (55 %) and received 20-30 Gy/5-10 fractions (63 %). No systemic toxicity or MRgFUS-MB-related adverse events occurred. The most severe acute adverse events were radiation-related grade 3 toxicities in 6 patients (55 %; dermatitis in 3, mucositis in 1, dysphagia in 6). No radiation necrosis or grade 4/5 toxicities were reported. 8 patients were included in the 3-month tumour response assessment: 4 had partial response (50 %), 3 had complete response (37.5 %), and 1 had progressive disease (12.5 %). CONCLUSIONS MRgFUS-MB treatment was safe and associated with high rates of tumour response at 3 months.
Collapse
Affiliation(s)
- Daniel Moore-Palhares
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | | | - Archya Dasgupta
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | | | - Shopnil Prasla
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Ling Ho
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Canada
| | - Lin Lu
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Canada
| | - Joseph Kung
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Canada
| | - Irene Karam
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ian Poon
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Andrew Bayley
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Evan McNabb
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Greg Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Biophysics, University of Toronto, Canada; Department of Neurosurgery, Medical University, Lublin, Poland
| | | | - Gregory J Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Biophysics, University of Toronto, Canada.
| |
Collapse
|
3
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
4
|
Sharma D, Czarnota GJ. Ultrasound-Based Radiation Enhancement: Concepts, Mechanisms and Therapeutic Applications. Technol Cancer Res Treat 2024; 23:15330338241298864. [PMID: 39540206 PMCID: PMC11561977 DOI: 10.1177/15330338241298864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Microbubbles have emerged as versatile carriers used both for cancer diagnosis and therapy. Microbubbles in the presence of ultrasound waves undergo cavitation, generating bioeffects near the cell's vicinity. Studies have shown ultrasound-stimulated microbubbles (USMB) to cause mechanical perturbation of endothelial cells, resulting in acid sphingomyelinase (ASMase)-induced ceramide production. Disruption of endothelial cells further causes vascular deterioration, leading to secondary tumor cell death. These effects are known to be synergistically higher when USMB is combined with radiation. This paper provides insight into the use of USMB as a potential radioenhancer. The possible underlying mechanism and therapeutic effects of combining USMB and radiation therapy are also presented.
Collapse
Affiliation(s)
- Deepa Sharma
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research, Toronto, Ontario, Canada
| | - Gregory J. Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Departments of Medical Biophysics, and Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Physical Sciences, Sunnybrook Research, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Sharma D, Xuan Leong K, Palhares D, Czarnota GJ. Radiation combined with ultrasound and microbubbles: A potential novel strategy for cancer treatment. Z Med Phys 2023; 33:407-426. [PMID: 37586962 PMCID: PMC10517408 DOI: 10.1016/j.zemedi.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 08/18/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Several emerging technologies are helping to battle cancer. Cancer therapies have been effective at killing cancer cells, but a large portion of patients still die to this disease every year. As such, more aggressive treatments of primary cancers are employed and have been shown to be capable of saving a greater number of lives. Recent research advances the field of cancer therapy by employing the use of physical methods to alter tumor biology. It uses microbubbles to enhance radiation effect by damaging tumor vasculature followed by tumor cell death. The technique can specifically target tumor volumes by conforming ultrasound fields capable of microbubbles stimulation and localizing it to avoid vascular damage in surrounding tissues. Thus, this new application of ultrasound-stimulated microbubbles (USMB) can be utilized as a novel approach to cancer therapy by inducing vascular disruption resulting in tumor cell death. Using USMB alongside radiation has showed to augment the anti-vascular effect of radiation, resulting in enhanced tumor response. Recent work with nanobubbles has shown vascular permeation into intracellular space, extending the use of this new treatment method to potentially further improve the therapeutic effect of the ultrasound-based therapy. The significant enhancement of localized tumor cell kill means that radiation-based treatments can be made more potent with lower doses of radiation. This technique can manifest a greater impact on radiation oncology practice by increasing treatment effectiveness significantly while reducing normal tissue toxicity. This review article summarizes the past and recent advances in USMB enhancement of radiation treatments. The review mainly focuses on preclinical findings but also highlights some clinical findings that use USMB as a therapeutic modality in cancer therapy.
Collapse
Affiliation(s)
- Deepa Sharma
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kai Xuan Leong
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Daniel Palhares
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory J Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Departments of Radiation Oncology, and Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|