1
|
Sheikhmali M, Jalilnejad E, Rafiee R. Synthesis, characterization, experimental design and process analysis of heavy metals adsorption on a wheat straw based amidoximated bioadsorbent. Sci Rep 2024; 14:31083. [PMID: 39730709 DOI: 10.1038/s41598-024-81982-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
In this research, 3-(trimethoxysilyl)propyl methacrylate (MPS) silane agent was applied to modify the extracted wheat straw (WS) cellulose as a natural biopolymer. Polyacrylonitrile (PAN) was attached to the MPS-modified WS (MPS-WS) via in-situ polymerization to form PAN-WS biocomposite. AO-WS amidoximated biocomposite adsorbent was synthesized through amidoxime reaction and the effects of different parameters including agitation speed, metal ion concentration, and adsorbent dosage on its efficiency of Pb(II) removal were investigated using the Taguchi experimental design method. The adsorbent was characterized using FE-SEM, FTIR, XRD, and TGA. The FTIR results confirmed that the alkaline treatment removed the hemicellulose and lignin groups and that the silane agent successfully bonded to the WS cellulose. The thermal stability of WS was enhanced by the MPS-WS composite due to the attachment of acrylonitrile polymer chains. The ANOVA results indicated that increasing the adsorbent dosage and decreasing the pollutant's initial concentration significantly improved the adsorption efficiency. The optimal conditions (an agitation speed = 400 rpm, C0 = 60 mg/L, an adsorbent amount = 0.1 g) yielded maximum adsorption capacity of 22.26 mg/g for the AO-WS bioadsorbent. The kinetic and isotherm studies revealed that the pseudo-second-order kinetic model and the Dubinin-Radushkevich isotherm fit the experimental data best.
Collapse
Affiliation(s)
- Mostafa Sheikhmali
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, 17165‑57166, Iran
| | - Elham Jalilnejad
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, 17165‑57166, Iran.
| | - Reza Rafiee
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, 17165‑57166, Iran
| |
Collapse
|
2
|
Liao Z, Hu Y, Shen Y, Chen K, Qiu C, Yang J, Yang L. Investigation into the Reinforcement Modification of Natural Plant Fibers and the Sustainable Development of Thermoplastic Natural Plant Fiber Composites. Polymers (Basel) 2024; 16:3568. [PMID: 39771421 PMCID: PMC11678276 DOI: 10.3390/polym16243568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Natural plant fibers (NPFs) have emerged as a sustainable alternative in the manufacture of composites due to their renewability and low environmental impact. This has led to a significant increase in the use of natural plant fiber-reinforced polymers (NPFRPs) in a variety of industries. The diversity of NPF types brings a wide range of properties and functionalities to NPFRPs, which in turn highlights the urgent need to improve the properties of fiber materials in order to enhance their performance and suitability. This paper provides insight into the processing mechanisms behind NPF fiber treatments, exploring how these treatments affect the mechanical, thermal and environmental properties of NPFRPs. It also offers a critical assessment of the advantages and disadvantages of physical, chemical, biological and nanotechnological treatments. The findings of our analysis provide a basis for the development of future treatments that aim to enhance the material properties of NPFRPs, thereby increasing their competitiveness with conventional synthetic fiber-reinforced polymers. Finally, a novel thermoplastic resin composite system, Elium-NPFRP, is proposed that embodies the principles of green development. The system has been designed with the objective of capitalizing on the environmental benefits of NPFs while simultaneously addressing the challenges associated with the integration of NPFs into polymer matrices. The Elium-NPFRP composite system not only exemplifies the potential of NPFs for sustainable materials science, but is also a practical solution that can be implemented in a diverse range of applications, spanning automotive components to construction materials. This has the potential to reduce carbon footprints and promote a circular economy.
Collapse
Affiliation(s)
- Zhenhao Liao
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (Z.L.); (Y.H.); (K.C.)
| | - Yiyun Hu
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (Z.L.); (Y.H.); (K.C.)
| | - Yan Shen
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China; (Y.S.); (J.Y.)
| | - Ke Chen
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (Z.L.); (Y.H.); (K.C.)
| | - Cheng Qiu
- Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong 999077, China; (Y.S.); (J.Y.)
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen 518031, China
| | - Lei Yang
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; (Z.L.); (Y.H.); (K.C.)
| |
Collapse
|
3
|
Grimm AP, Plank M, Stihl A, Schmitt CW, Voll D, Schacher FH, Lahann J, Théato P. Inverse Vulcanization of Activated Norbornenyl Esters-A Versatile Platform for Functional Sulfur Polymers. Angew Chem Int Ed Engl 2024; 63:e202411010. [PMID: 38895894 DOI: 10.1002/anie.202411010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Elemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions. In here, we report for the first time the inverse vulcanization of norbornenyl pentafluorophenyl ester (NB-PFPE), allowing for post-modification of inverse vulcanized polymers via amidation of reactive PFP esters to yield high sulfur content polymers under mild conditions. Amidation of the precursor material with three functional primary amines (α-amino-ω-methoxy polyethylene glycol, aminopropyl trimethoxy silane, allylamine) was investigated. The resulting materials were applicable as sulfur containing poly(ethylene glycol) nanoparticles in aqueous environment. Cross-linked mercury adsorbents, sulfur surface coatings, and high-sulfur content networks with predictable thermal properties were achievable using aminopropyl trimethoxy silane and allylamine for post-polymerization modification, respectively. With the broad range of different amines available and applicable for post-polymerization modification, the versatility of poly(sulfur-random-NB-PFPE) as a platform precursor polymer for novel specialized sulfur containing materials was showcased.
Collapse
Affiliation(s)
- Alexander P Grimm
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martina Plank
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Stihl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
| | - Christian W Schmitt
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dominik Voll
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
| | - Jörg Lahann
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Patrick Théato
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| |
Collapse
|
4
|
Guo X, Fu H, Gao X, Zhao Z, Hu Z. Study on the adsorption of Zn(II) and Cu(II) in acid mine drainage by fly ash loaded nano-FeS. Sci Rep 2024; 14:9927. [PMID: 38688999 PMCID: PMC11061279 DOI: 10.1038/s41598-024-58815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Aiming at the acid mine drainage (AMD) in zinc, copper and other heavy metals treatment difficulties, severe pollution of soil and water environment and other problems. Through the ultrasonic precipitation method, this study prepared fly ash-loaded nano-FeS composites (nFeS-F). The effects of nFeS-F dosage, pH, stirring rate, reaction time and initial concentration of the solution on the adsorption of Zn(II) and Cu(II) were investigated. The data were fitted by Lagergren first and second-order kinetic equations, Internal diffusion equation, Langmuir and Freundlich isotherm models, and combined with SEM, TEM, FTIR, TGA, and XPS assays to reveal the mechanism of nFeS-F adsorption of Zn(II) and Cu(II). The results demonstrated that: The removal of Zn(II) and Cu(II) by nFeS-F could reach 83.36% and 70.40%, respectively (The dosage was 8 g/L, pH was 4, time was 150 min, and concentration was 100 mg/L). The adsorption process, mainly chemical adsorption, conforms to the Lagergren second-order kinetic equation (R2 = 0.9952 and 0.9932). The adsorption isotherms have a higher fitting degree with the Langmuir model (R2 = 0.9964 and 0.9966), and the adsorption is a monolayer adsorption process. This study can provide a reference for treating heavy metals in acid mine drainage and resource utilization of fly ash.
Collapse
Affiliation(s)
- Xuying Guo
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, Liaoning, China.
- College of Science, Liaoning Technical University, Fuxin, 123000, Liaoning, China.
- College of Mining, Liaoning Technical University, Fuxin, 123000, Liaoning, China.
| | - Honglei Fu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| | - Xinle Gao
- College of Mining, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| | - Zilong Zhao
- College of Mining, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| | - Zhiyong Hu
- College of Mining, Liaoning Technical University, Fuxin, 123000, Liaoning, China
| |
Collapse
|
5
|
Alizadeh M, Peighambardoust SJ, Foroutan R. Efficacious adsorption of divalent nickel ions over sodium alginate-g-poly(acrylamide)/hydrolyzed Luffa cylindrica-CoFe 2O 4 bionanocomposite hydrogel. Int J Biol Macromol 2024; 254:127750. [PMID: 38287592 DOI: 10.1016/j.ijbiomac.2023.127750] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 01/31/2024]
Abstract
Existing Ni2+ heavy metal ions in an aqueous medium are highly hazardous for living organisms and humans. Therefore, designing low-cost adsorbents with enhanced effectiveness is essential for removing nickel ions to safeguard public health. In this study, a novel green nanocomposite hydrogel was synthesized through the free radical solution and bulk polymerization method, and its capability to remove divalent nickel ions from aqueous media was examined. The bionanocomposite hydrogel named as SA-g-poly(AAm)/HL-CoFe2O4 was produced by grafting polyacrylamide (AAm) onto sodium alginate (SA) in the presence of a magnetic composite recognized as HL-CoFe2O4, where HL represents hydrolyzed Luffa Cylindrica. By employing FT-IR, XRD, VSM, SEM, EDX-Map, BET, DLS, HPLC, and TGA techniques, morphological evaluation and characterization of the adsorbents were carried out. The performance of the adsorption process was studied under varying operational conditions including pH, temperature, contact duration, initial concentration of pollutant ions, and adsorbent dosage. HPLC analysis proved the non-toxic structure of the bionanocomposite hydrogel. The number of unreacted acrylamide monomers within the hydrogel matrix was measured at 20.82 mg/kg. The optimum conditions was discovered to be pH = 6, room temperature, adsorbent dosage of 1 of g.L-1, initial Ni2+ concentration of 10 mg.L-1, and contact time of 100 min, and the maximum adsorption efficiency at optimal state was calculated as 70.09, 90.25, and 93.83 % for SA-g-poly (AAm), SA-g-poly(AAm)/HL, and SA-g-poly(AAm)/HL-CoFe2O4 samples, respectively. Langmuir isotherm model was in good agreement with the experimental data and the maximum adsorption capacity of SA-g-poly(AAm), SA-g-poly(AAm)/HL, and SA-g-poly(AAm)/HL-CoFe2O4 samples was calculated to be 31.37, 43.15, and 45.19 mg.g-1, respectively. The adsorption process, according to kinetic studies, follows a pseudo-second-order kinetic model. Investigations on thermodynamics also demonstrated that the process is exothermic and spontaneous. Exploring the interference effect of co-existing ions showed that the adsorption efficiency has decreased with concentration enhancement of Ca2+ and Na+ cations in aqueous medium. Furthermore, the adsorption/desorption assessments revealed that after 8 consecutive cycles, there had been no noticeable decline in the adsorption effectiveness. Finally, actual wastewater treatment outcomes demonstrated that the bionanocomposite hydrogel successfully removes heavy metal pollutants from shipbuilding industry effluent. Therefore, the findings revealed that the newly fabricated bionanocomposite hydrogel is an efficient, cost-effective, easy-separable, and green adsorbent that could be potentially utilized to remove divalent nickel ions from wastewater.
Collapse
Affiliation(s)
- Mehran Alizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| | | | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz 5166616471, Iran
| |
Collapse
|