1
|
Nair AV, Singh A, Chakravortty D. Defence Warriors: Exploring the crosstalk between polyamines and oxidative stress during microbial pathogenesis. Redox Biol 2025; 83:103648. [PMID: 40288044 DOI: 10.1016/j.redox.2025.103648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025] Open
Abstract
Microbial infections have been a widely studied area of disease research since historical times, yet they are a cause of severe illness and deaths worldwide. Furthermore, infections by pathogens are not just restricted to humans; instead, a diverse range of hosts, including plants, livestock, marine organisms and fish, cause significant economic losses and pose threats to humans through their transmission in the food chain. It is now believed that both the pathogen and the host contribute to the outcomes of a disease pathology. Researchers have unravelled numerous aspects of host-pathogen interactions, offering valuable insights into the physiological, cellular and molecular processes and factors that contribute to the development of infectious diseases. Polyamines are key factors regulating cellular processes and human ageing and health. However, they are often overlooked in the context of host-pathogen interactions despite playing a dynamic role as a defence molecule from the perspective of the host as well as the pathogen. They form a complex network interacting with several molecules within the cell, with reactive oxygen species being a key component. This review presents a thorough overview of the current knowledge of polyamines and their intricate interactions with reactive oxygen species in the infection of multiple pathogens in diverse hosts. Interestingly, the review covers the interplay of the commensals and pathogen infection involving polyamines and reactive oxygen species, highlighting an unexplored area within this field. From a future perspective, the dynamic interplay of polyamines and oxidative stress in microbial pathogenesis is a fascinating area that widens the scope of developing therapeutic strategies to combat deadly infections.
Collapse
Affiliation(s)
- Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bengaluru, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
2
|
Olędzka I, Dmochowska D, Pieckowski M, Waleron K, Waleron M, Bączek T, Kowalski P. Sensitive analysis of polyamines by micellar-electrokinetic chromatography with laser-induced fluorescence (MEKC-LIF) in mineral media samples. Talanta 2025; 294:128172. [PMID: 40273714 DOI: 10.1016/j.talanta.2025.128172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
A micellar electrokinetic chromatography (MEKC) method coupled with laser-induced fluorescence (LIF) detection was developed and validated for the determination of five aliphatic polyamines in mineral media samples. Since polyamines lack inherent UV chromophores or fluorophores, fluorescence detection was enhanced using precapillary derivatization with fluorescein isothiocyanate isomer I (FITC). Key parameters affecting the derivatization, including reagent concentration, reaction time, and temperature, were optimized to improve sensitivity. Under optimal conditions, with a background electrolyte (BGE) of 20 mM borax and 20 mM SDS, polyamines were successfully separated, achieving limits of detection as low as 0.03 μM for cadaverine and 0.09 μM for putrescine, spermine, spermidine, and norspermidine. The method demonstrated the importance of borate complexation and the use of anionic surfactants for improving both sweeping and fluorescence signal intensity. The MEKC-LIF method was applied to analyze polyamines in mineral media from in vitro cultures of Arabidopsis thaliana and Pectobacterium betavasculorum, grown individually and in co-culture. Results showed that bacteria can synthesize or degrade polyamines, suggesting their importance in plant-bacteria interactions. The method enables sensitive analysis of polyamine metabolism, and its use provides insights into inter-kingdom communication.
Collapse
Affiliation(s)
- Ilona Olędzka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, Gdańsk, Poland
| | - Dominika Dmochowska
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, Gdańsk, Poland
| | - Michał Pieckowski
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, Gdańsk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Poland
| | - Małgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdańsk, University of Gdańsk, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, Gdańsk, Poland.
| | - Piotr Kowalski
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, Gdańsk, Poland
| |
Collapse
|
3
|
Jamali F, Mousavi S, Homayouni-Rad A, Meshkini A, Alikhah H, Houshyar J, Kamalledin Moghadam S, Yaghoubi SM, Motlagh Asghari K, Torbati Ilkhchi M, Naseri Alavi SA. Exploring Innovative Approaches for Managing Spinal Cord Injury: A Comprehensive Review of Promising Probiotics and Postbiotics. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10513-6. [PMID: 40232596 DOI: 10.1007/s12602-025-10513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 04/16/2025]
Abstract
Spinal cord injury (SCI) affects millions of people worldwide annually, presenting significant challenges in functional recovery despite therapeutic advancements. Current treatment strategies predominantly focus on stabilizing the spinal cord and facilitating neural repair, yet their effectiveness remains uncertain and controversial. Recent scientific investigations have explored the potential of probiotics and postbiotics to modulate inflammation, influence neurotransmitters, and aid in tissue repair, marking a potential paradigm shift in SCI management. This review critically evaluates these innovative approaches, emphasizing their ability to harness the natural properties of microorganisms within the body to potentially enhance outcomes in SCI treatment. By analyzing the latest research findings, this review provides valuable insights into how probiotics and postbiotics can revolutionize inflammation management and neurological recovery following SCI, underscoring their promising role in future therapeutic strategies aimed at improving the quality of life of SCI patients globally.
Collapse
Affiliation(s)
- Fereshteh Jamali
- Neurosurgery Department, Children'S Hospital at Montefiore, New York City, USA
| | - Safa Mousavi
- Department of Public Health, College of Health and Human Services, California State University, Fresno, CA, USA
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Meshkini
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalil Houshyar
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Kamalledin Moghadam
- Department of Food Science and Technology, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Kimia Motlagh Asghari
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | |
Collapse
|
4
|
Alijani S, Raji MR, Emami Bistgani Z, Ehtesham Nia A, Farajpour M. Spermidine-induced improvements in water relations and antioxidant defense enhance drought tolerance in yarrow ( Achillea millefolium L.). Heliyon 2025; 11:e41482. [PMID: 39831168 PMCID: PMC11741945 DOI: 10.1016/j.heliyon.2024.e41482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/14/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Drought stress poses a serious threat to agricultural productivity worldwide. This study investigated the mitigative effects of exogenous spermidine on drought stressed yarrow (Achillea millefolium L.). Plants were subjected to three drought levels (25 %, 50 % and 75 % field capacity) and foliar sprayed with 0, 1.5 and 3 μM spermidine. Drought significantly reduced relative water content, photosynthetic pigments (chlorophyll, carotenoids), osmolyte (proline, soluble sugars) accumulation and antioxidant enzyme activities such as catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX), indicating oxidative damage. Spermidine treatment attenuated drought injury by improving the above parameters. Maximum responses were observed at 1.5 μM for photosynthetic pigments and osmolytes, while 3 μM performed best for secondary metabolites (phenolics, flavonoids, anthocyanins) and antioxidant enzymes. Drought also upregulated secondary metabolites like phenolics, while spermidine further augmented their levels. Moreover, spermidine maintained membrane integrity and osmotic adjustment under water deficit. Overall, spermidine enhanced yarrow's drought tolerance by modulating physiological and biochemical processes. Our findings provide insights into spermidine-induced adaptation mechanisms in plants combating water scarcity. Optimization of spermidine concentration may help develop drought-resilient crops.
Collapse
Affiliation(s)
- Sajedeh Alijani
- Department of Horticulture, College of Agriculture, Lorestan University, Khoram Abad, 44316-68151, Iran
| | - Mohammad-Reza Raji
- Department of Horticulture, College of Agriculture, Lorestan University, Khoram Abad, 44316-68151, Iran
| | - Zohreh Emami Bistgani
- Isfahan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Isfahan, 81748-35117, Iran
| | - Abdollah Ehtesham Nia
- Department of Horticulture, College of Agriculture, Lorestan University, Khoram Abad, 44316-68151, Iran
| | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
| |
Collapse
|
5
|
Ghimire B, Pendyala B, Patras A, Baysal-Gurel F. Effect of Plasma-Activated Water (PAW) Generated Using Non-Thermal Atmospheric Plasma on Phytopathogenic Bacteria. PLANT DISEASE 2024; 108:3446-3452. [PMID: 39146000 DOI: 10.1094/pdis-05-24-0957-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Plasma-activated water (PAW) exhibits potent antimicrobial properties attributed to the generation of diverse reactive oxygen and nitrogen species. This study assessed the effectiveness of PAW in vitro against phytopathogenic Xanthomonas arboricola and Pseudomonas syringae pv. syringae, which cause diseases on ornamental plants. Extending the plasma activation time of water and the incubation time of bacterial suspension in PAW increased the effectiveness of PAW. Treatments consisting of PAW activation using a power output of 200 W and a frequency of 50 Hz at different activation times and target population incubation times revealed significantly different effectiveness against P. syringae pv. syringae and X. arboricola. X. arboricola (reduction of 4.946 ± 0.20 log10 CFU/ml) was more sensitive to PAW inactivation than P. syringae pv. syringae (reduction of 3 ± 0.15 log10 CFU/ml). The plasma activation of water for 20 min followed by incubation of bacterial population for 180 min was proven to be the most effective treatment combination. The plasma activation time dose required to reduce the population by 90% was 7.47 ± 1.09 min for P. syringae pv. syringae and 4.45 ± 1.81 min for X. arboricola incubated for 180 min in PAW. The results of this study have the potential to further contribute to assessment of the effects of PAW on pathogen-infected plant tissues. In addition, the findings of this study could aid in further characterization of the reactive species formed during the plasma activation of water.
Collapse
Affiliation(s)
- Bhawana Ghimire
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN 37110, U.S.A
| | - Brahmaiah Pendyala
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, U.S.A
| | - Ankit Patras
- Department of Food and Animal Sciences, College of Agriculture, Tennessee State University, Nashville, TN 37209, U.S.A
| | - Fulya Baysal-Gurel
- Department of Agricultural Sciences and Engineering, College of Agriculture, Tennessee State University, Otis L. Floyd Nursery Research Center, McMinnville, TN 37110, U.S.A
| |
Collapse
|
6
|
Gong Y, Wu D, Yan X, Zhang Q, Zheng W, Li B, Chen H, Wang L. Unveiling the Antibacterial Mechanism of Gold Nanoparticles by Analyzing Bacterial Metabolism at the Molecular Level. Anal Chem 2024; 96:18865-18872. [PMID: 39532662 DOI: 10.1021/acs.analchem.4c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The threat of drug-resistant bacteria is challenging, and it is urgent to explore new antibiotics. Gold nanoparticles (AuNPs) are known to be a group of promising antibacterial agents for replacing conventional antibiotics. Nevertheless, their antibacterial mechanism remains to be elucidated. Herein, we directly observed the interaction between antibacterial AuNPs and bacteria at the molecular level using neutral desorption extractive electrospray ionization mass spectrometry (ND-EESI-MS). We monitored and analyzed the dynamic changes of bacterial metabolites in real time after AuNP treatment. Ten substances representing 3 major metabolic pathways, including protein and nucleic acid synthesis, energy metabolism, and quorum sensing, were identified, indicating that AuNPs may exert antibacterial effects through multiple mechanisms influencing bacterial metabolism and communication. This study deepens the understanding of the antibacterial mechanism of AuNPs and is insightful for designing and screening new antibacterial agents.
Collapse
Affiliation(s)
- Youhuan Gong
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Dong Wu
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Xiaojie Yan
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Qian Zhang
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, P. R. China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, P. R. China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Huanwen Chen
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| | - Le Wang
- Academician Workstation, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
- Cancer Research Center, Jiangxi Province Key Laboratory for Diagnosis, Treatment, and Rehabilitation of Cancer in Chinese Medicine, Jiangxi University of Chinese Medicine, No. 1688 Meiling Avenue, Xinjian District, Nanchang, Jiangxi 330004, P. R. China
| |
Collapse
|
7
|
Martínez-Soto D, Hernández-Rojas AJ, Valdés-Santiago L, García-Ortega LF, Ramírez-Martínez A, Trujillo-Esquivel E, Pérez-Rodríguez F, Ortiz-Castellanos L, León-Ramírez CG, Esquivel-Naranjo EU, Ruiz-Herrera J, Cervantes-Chávez JA. Conservation of the Polyamines Pathway in Ustilaginomycetes A Genomic and Experimental Approach. J Basic Microbiol 2024:e2400561. [PMID: 39526346 DOI: 10.1002/jobm.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/03/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Polyamines are organic and aliphatic molecules essential for the growth, development, and survival of both eukaryotes and prokaryotes. In fungi, polyamines play a crucial role in cellular differentiation and pathogenesis. Since fungi and animals are closely related evolutionarily, and fungi can be easily genetically manipulated in the lab, they serve as excellent models for studying polyamine metabolism and the molecular mechanisms controlled by these biomolecules. Although the metabolism of polyamines has been extensively studied in model fungi such as Saccharomyces cerevisiae and Ustilago maydis, the conservation of the polyamine biosynthesis pathway in other Ustilaginomycetes, a class of fungi that includes phytopathogens, saprophytes, mutualists, and mycorrhizae, has not been thoroughly investigated. In this study, using a genomic and bioinformatics approach, we analyzed the conservation of the polyamine biosynthesis pathway in Ustilaginomycetes. Additionally, we confirmed the functional conservation of ornithine decarboxylase (Odc), which is involved in the synthesis of putrescine, one of the most important polyamines in fungi and complex multicellular eukaryotic organisms, using genetics and molecular biology tools. Moreover, we identified the differentially regulated genes by this polyamine in U. maydis. This research provides insights into the similarities and differences in the conservation of the polyamine biosynthesis pathway in fungi, and it expands our understanding of the role of polyamines and the mechanisms regulated by these molecules in eukaryotes.
Collapse
Affiliation(s)
- Domingo Martínez-Soto
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC, México
| | - Albo J Hernández-Rojas
- Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Universidad Autónoma de Querétaro, Querétaro, México
| | - Laura Valdés-Santiago
- CONAHCYT-Tecnológico Nacional de México/Instituto Tecnológico Superior de Irapuato, Irapuato, México
| | - Luis F García-Ortega
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México
| | - Adriana Ramírez-Martínez
- Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Universidad Autónoma de Querétaro, Querétaro, México
| | - Elías Trujillo-Esquivel
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, BC, México
| | - Fernando Pérez-Rodríguez
- Departamento de Ciencias Biomédicas, Escuela de Medicina, Universidad Quetzalcóatl Irapuato, Irapuato, México
| | - Lucila Ortiz-Castellanos
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México
| | - Claudia G León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México
| | - Edgardo Ulises Esquivel-Naranjo
- Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Universidad Autónoma de Querétaro, Querétaro, México
| | - José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, México
| | - José Antonio Cervantes-Chávez
- Facultad de Ciencias Naturales, Unidad de Microbiología Básica y Aplicada, Universidad Autónoma de Querétaro, Querétaro, México
| |
Collapse
|
8
|
Jeong S, Schütz V, Demir F, Preusche M, Huesgen P, Bigler L, Kovacic F, Gutbrod K, Dörmann P, Schulz M. Cyclic Isothiocyanate Goitrin Impairs Lotus japonicus Nodulation, Affects the Proteomes of Nodules and Free Mesorhizobium loti, and Induces the Formation of Caffeic Acid Derivatives in Bacterial Cultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:2897. [PMID: 39458844 PMCID: PMC11511026 DOI: 10.3390/plants13202897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
The continuous release of glucosinolates into the soil by Brassicaceae root exudation is a prerequisite to maintaining toxic levels of breakdown products such as isothiocyanates (ITCs). ITCs influence plant and microbial diversity in ecosystems, while fungi and Rhizobiaceae are particularly injured. Studies explaining the molecular mechanisms of the negative effects are presently limited. Therefore, we investigated the early effects of cyclic ITC goitrin on proteomes of the host and symbiotic Mesorhizobium loti in the nodules of Lotus japonicus and of free-living bacteria. In the nodules, many host proteins had a higher abundance, among them, peroxidases and pathogenesis-related PR-10 proteins functioning in the abscisic-acid-activated signaling pathway. In the microsymbiont, transporter proteins as a prominent group are enhanced; some proteins involved in N-fixation decreased. The proteomes give a report about the loss of immunity suppression resulting in the termination of symbiosis, which initiates nodule senescence. Free-living M. loti are severely damaged, indicated, i.a., by a decrease in transporter proteins, the assumed candidates for goitrin protein complex formation, and high proteolysis. The production of chicoric acid by the accompanying bacteria is inhibitory for M. loti but connected to goitrin elimination, as confirmed by mass spectrometric (MS) analysis. In summary, the nodulation process is severely affected by goitrin, causing nodule dysfunction and failed nodule development. N deficiency conditions leads to yellowish leaves and leaf abscission.
Collapse
Affiliation(s)
- Seungwoo Jeong
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Vadim Schütz
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Fatih Demir
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Matthias Preusche
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
- Faculty of Agricultural Sciences and Landscape Architecture, University of Applied Sciences Osnabrueck, 49090 Osnabrueck, Germany
| | - Pitter Huesgen
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany;
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, CH-8057 Zurich, Switzerland;
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Katharina Gutbrod
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Peter Dörmann
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| | - Margot Schulz
- IMBIO Institute of Molecular Biotechnology, University of Bonn, 53115 Bonn, Germany; (S.J.); (V.S.); (M.P.); (K.G.); (P.D.)
| |
Collapse
|
9
|
Mishra A, Chakraborty S, Jaiswal TP, Bhattacharjee S, Kesarwani S, Mishra AK, Singh SS. Untangling the adaptive strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1 under low temperature. Extremophiles 2024; 28:31. [PMID: 39020126 DOI: 10.1007/s00792-024-01346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
The present study investigates the low temperature tolerance strategies of thermophilic bacterium Anoxybacillus rupiensis TPH1, which grows optimally at 55 °C , by subjecting it to a temperature down-shift of 10 °C (45 °C) for 4 and 6 h followed by studying its growth, morphophysiological, molecular and proteomic responses. Results suggested that although TPH1 experienced increased growth inhibition, ROS production, protein oxidation and membrane disruption after 4 h of incubation at 45 °C yet maintained its DNA integrity and cellular structure through the increased expression of DNA damage repair and cell envelop synthesizing proteins and also progressively alleviated growth inhibition by 20% within two hours i.e., 6 h, by inducing the expression of antioxidative enzymes, production of unsaturated fatty acids, capsular and released exopolysaccharides and forming biofilm along with chemotaxis proteins. Conclusively, the adaptation of Anoxybacillus rupiensis TPH1 to lower temperature is mainly mediated by the synthesis of large numbers of defense proteins and exopolysaccharide rich biofilm formation.
Collapse
Affiliation(s)
- Aditi Mishra
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Sindhunath Chakraborty
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Tameshwar Prasad Jaiswal
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Shreya Kesarwani
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Satya Shila Singh
- Laboratory of Cyanobacterial Systematics and Stress Biology, Department of Botany, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
10
|
McReynolds E, Elshahed MS, Youssef NH. An ecological-evolutionary perspective on the genomic diversity and habitat preferences of the Acidobacteriota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.601421. [PMID: 39005473 PMCID: PMC11245096 DOI: 10.1101/2024.07.05.601421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Members of the phylum Acidobacteriota inhabit a wide range of ecosystems including soils. We analyzed the global patterns of distribution and habitat preferences of various Acidobacteriota lineages across major ecosystems (soil, engineered, host-associated, marine, non-marine saline and alkaline, and terrestrial non-soil ecosystem) in 248,559 publicly available metagenomic datasets. Classes Terriglobia, Vicinamibacteria, Blastocatellia, and Thermoanaerobaculia were highly ubiquitous and showed clear preference to soil over non-soil habitats, class Polarisedimenticolia showed comparable ubiquity and preference between soil and non-soil habitats, while classes Aminicenantia and Holophagae showed preferences to non-soil habitats. However, while specific preferences were observed, most Acidobacteriota lineages were habitat generalists rather than specialists, with genomic and/or metagenomic fragments recovered from soil and non-soil habitats at various levels of taxonomic resolution. Comparative analysis of 1930 genomes strongly indicates that phylogenetic affiliation plays a more important role than the habitat from which the genome was recovered in shaping the genomic characteristics and metabolic capacities of the Acidobacteriota. The observed lack of strong habitat specialization and habitat transition driven lineage evolution in the Acidobacteriota suggest ready cross colonization between soil and non-soil habitats. We posit that such capacity is key to the successful establishment of Acidobacteriota as a major component in soil microbiomes post ecosystem disturbance events or during pedogenesis.
Collapse
Affiliation(s)
- Ella McReynolds
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
11
|
Zhang Y, Chen C, Du X, Yu Z, Min Q, Chen C, Wu H, Tan W, Guan X, Zhang L. Urea Cycle of Bacillus thuringiensis Affects Its Survival under UV Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7291-7298. [PMID: 38507714 DOI: 10.1021/acs.jafc.4c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Bacillus thuringiensis (Bt) is widely used to produce biological pesticides. However, its persistence is limited because of ultraviolet (UV) rays. In our previous study, we found that exogenous intermediates of the urea cycle were beneficial to Bt for survival under UV stress. To further explore the effect of the urea cycle on the resistance mechanism of Bt, the rocF/argG gene, encoding arginase and argininosuccinate synthase, respectively, were knocked out and recovered in this study. After the target genes were removed, respectively, the urea cycle in the tested Bt was inhibited to varying degrees. The UV stress test showed that the urea cycle disorder could reduce the resistance of Bt under UV stress. Meanwhile, the antioxidant enzyme activities of Bt were also decreased to varying degrees due to the knockout of the target genes. All of these results revealed that the urea cycle can metabolically regulate the stress resistance of Bt.
Collapse
Affiliation(s)
- Yile Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian China
| | - Caixia Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian China
| | - Xi Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian China
| | - Zhen Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian China
| | - Qingqing Min
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian China
| | - Chunmei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian China
| | - Haonan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian China
| | - Weilong Tan
- Center for Disease Control and Prevention of Eastern Command, Nanjing 210000, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian China
| |
Collapse
|
12
|
Xie H, Huang Y, Wang S, Che J, Luo T, Li L, Bao B. Deletion of speA and aroC genes impacts the pathogenicity of Vibrio anguillarum in spotted sea bass. Microb Pathog 2024; 189:106597. [PMID: 38395316 DOI: 10.1016/j.micpath.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Vibrio anguillarum is one of the major pathogens responsible for bacterial infections in marine environments, causing significant impacts on the aquaculture industry. The misuse of antibiotics leads to bacteria developing multiple drug resistances, which is detrimental to the development of the fisheries industry. In contrast, live attenuated vaccines are gradually gaining acceptance and widespread recognition. In this study, we constructed a double-knockout attenuated strain, V. anguillarum ΔspeA-aroC, to assess its potential for preparing a live attenuated vaccine. The research results indicate a significant downregulation of virulence-related genes, including Type VI secretion system, Type II secretion system, biofilm synthesis, iron uptake system, and other related genes, in the mutant strain. Furthermore, the strain lacking the genes exhibited a 67.47% reduction in biofilm formation ability and increased sensitivity to antibiotics. The mutant strain exhibited significantly reduced capability in evading host immune system defenses and causing in vivo infections in spotted sea bass (Lateolabrax maculatus), with an LD50 that was 13.93 times higher than that of the wild-type V. anguillarum. Additionally, RT-qPCR analysis of immune-related gene expression in spotted sea bass head kidney and spleen showed a weakened immune response triggered by the knockout strain. Compared to the wild-type V. anguillarum, the mutant strain caused reduced levels of tissue damage. The results demonstrate that the deletion of speA and aroC significantly reduces the biosynthesis of biofilms in V. anguillarum, leading to a decrease in its pathogenicity. This suggests a crucial role of biofilms in the survival and invasive capabilities of V. anguillarum.
Collapse
Affiliation(s)
- Haisheng Xie
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yajuan Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Shengming Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jingyuan Che
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Tuyan Luo
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Lekang Li
- Jiujiang Academy of Fishery Sciences, Jiujiang, 332000, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
13
|
Cabrera MÁ, Márquez SL, Pérez-Donoso JM. New insights into xenobiotic tolerance of Antarctic bacteria: transcriptomic analysis of Pseudomonas sp. TNT3 during 2,4,6-trinitrotoluene biotransformation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17256-17274. [PMID: 38337121 DOI: 10.1007/s11356-024-32298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
The xenobiotic 2,4,6-trinitrotoluene (TNT) is a highly persistent environmental contaminant, whose biotransformation by microorganisms has attracted renewed attention. In previous research, we reported the discovery of Pseudomonas sp. TNT3, the first described Antarctic bacterium with the ability to biotransform TNT. Furthermore, through genomic analysis, we identified distinctive features in this isolate associated with the biotransformation of TNT and other xenobiotics. However, the metabolic pathways and genes active during TNT exposure in this bacterium remained unexplored. In the present transcriptomic study, we used RNA-sequencing to investigate gene expression changes in Pseudomonas sp. TNT3 exposed to 100 mg/L of TNT. The results showed differential expression of 194 genes (54 upregulated and 140 downregulated), mostly encoding hypothetical proteins. The most highly upregulated gene (> 1000-fold) encoded an azoreductase enzyme not previously described. Other significantly upregulated genes were associated with (nitro)aromatics detoxification, oxidative, thiol-specific, and nitrosative stress responses, and (nitro)aromatic xenobiotic tolerance via efflux pumps. Most of the downregulated genes were involved in the electron transport chain, pyrroloquinoline quinone (PQQ)-related alcohol oxidation, and motility. These findings highlight a complex cellular response to TNT exposure, with the azoreductase enzyme likely playing a crucial role in TNT biotransformation. Our study provides new insights into the molecular mechanisms of TNT biotransformation and aids in developing effective TNT bioremediation strategies. To the best of our knowledge, this report is the first transcriptomic response analysis of an Antarctic bacterium during TNT biotransformation.
Collapse
Affiliation(s)
- Ma Ángeles Cabrera
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile
| | - Sebastián L Márquez
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile
- Fundación Científica y Cultural Biociencia, José Domingo Cañas 2280, Ñuñoa, Santiago, Chile
| | - José M Pérez-Donoso
- Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de La Vida, Universidad Andrés Bello, Av. República 330, Santiago, Chile.
| |
Collapse
|
14
|
Serrano-Marín J, Marin S, Bernal-Casas D, Lillo A, González-Subías M, Navarro G, Cascante M, Sánchez-Navés J, Franco R. A metabolomics study in aqueous humor discloses altered arginine metabolism in Parkinson's disease. Fluids Barriers CNS 2023; 20:90. [PMID: 38049870 PMCID: PMC10696737 DOI: 10.1186/s12987-023-00494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND The lack of accessible and informative biomarkers results in a delayed diagnosis of Parkinson's disease (PD), whose symptoms appear when a significant number of dopaminergic neurons have already disappeared. The retina, a historically overlooked part of the central nervous system (CNS), has gained recent attention. It has been discovered that the composition of cerebrospinal fluid influences the aqueous humor composition through microfluidic circulation. In addition, alterations found in the brain of patients with PD have a correlate in the retina. This new paradigm highlights the potential of the aqueous humor as a sample for identifying differentially concentrated metabolites that could, eventually, become biomarkers if also found altered in blood or CSF of patients. In this research we aim at analyzing the composition of the aqueous humor from healthy controls and PD patients. METHODS A targeted metabolomics approach with concentration determination by mass spectrometry was used. Statistical methods including principal component analysis and linear discriminants were used to select differentially concentrated metabolites that allow distinguishing patients from controls. RESULTS In this first metabolomics study in the aqueous humor of PD patients, elevated levels of 16 compounds were found; molecules differentially concentrated grouped into biogenic amines, amino acids, and acylcarnitines. A biogenic amine, putrescine, alone could be a metabolite capable of differentiating between PD and control samples. The altered levels of the metabolites were correlated, suggesting that the elevations stem from a common mechanism involving arginine metabolism. CONCLUSIONS A combination of three metabolites, putrescine, tyrosine, and carnitine was able to correctly classify healthy participants from PD patients. Altered metabolite levels suggest altered arginine metabolism. The pattern of metabolomic disturbances was not due to the levodopa-based dopamine replacement medication because one of the patients was not yet taking levodopa but a dopamine receptor agonist.
Collapse
Affiliation(s)
- Joan Serrano-Marín
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, 08028, Spain
- CIBEREHD. Network Center for Hepatic and Digestive Diseases, National Spanish Health Institute Carlos III (ISCIII), Madrid, 28029, Spain
| | - David Bernal-Casas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona (UB), Barcelona, 08028, Spain
| | - Alejandro Lillo
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
| | - Marc González-Subías
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Universitat de Barcelona, Barcelona, Spain
- CiberNed. Network Center for Biomedical Research in Neurodegenerative Diseases., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain
- Institute of Biomedicine of University of Barcelona (IBUB), University of Barcelona (UB), Barcelona, 08028, Spain
- CIBEREHD. Network Center for Hepatic and Digestive Diseases, National Spanish Health Institute Carlos III (ISCIII), Madrid, 28029, Spain
| | - Juan Sánchez-Navés
- Department of Ophthalmology, Ophthalmedic and I.P.O. Institute of Ophthalmology, Palma de Mallorca, Spain
| | - Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, Barcelona, Spain.
- CiberNed. Network Center for Biomedical Research in Neurodegenerative Diseases., Spanish National Health Institute Carlos iii, Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain.
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
15
|
Dunn MF, Becerra-Rivera VA. The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2671. [PMID: 37514285 PMCID: PMC10385936 DOI: 10.3390/plants12142671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant-PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant-microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research.
Collapse
Affiliation(s)
- Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Víctor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|