Rahimkhoei V, Akbari A, Jassim AY, Hussein UAR, Salavati-Niasari M. Recent advances in targeting cancer stem cells by using nanomaterials.
Int J Pharm 2025;
673:125381. [PMID:
39988213 DOI:
10.1016/j.ijpharm.2025.125381]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/12/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Cancer stem cells (CSCs) are a special group of cells that start, regenerate, and maintain the growth of tumors. Cancer stem cells (CSCs) contribute to the dissemination of tumors, their recurrence following treatment, and the mechanisms by which cancers develop resistance to therapies. CSCs reside in a unique microenvironment influenced by a variety of factors from their immediate surroundings. These factors include low oxygen levels, too much new blood vessel growth, a shift in how cells use energy from breathing oxygen to breaking down glucose, and an increase in certain markers and signals related to stem cells that help remove drugs from the body. Antibodies and special molecules that focus on the unique features keeping the environment stable are used to deliver cancer treatments to CSCs. As a result, nanoparticles are extremely effective in delivering drugs that combat cancer directly to cancer stem cells. Right now, stem cell nanotechnology is a new and interesting area of study. Some experiments on how stem cells interact with tiny structures or materials have shown good results. The importance of tiny structures and materials in creating treatments using stem cells for diseases and injuries has been clearly understood. The way nanomaterials are built and their characteristics influence how stem cells grow and change. This area of study is a new and exciting field where material science meets medicine. This review talks about the biology of CSCs and new ways to create nanoparticles (NPs) that can deliver cancer drugs specifically to these CSCs. This review talks about the creation of different types of tiny particles, including synthetic and natural polymer particles, lipid particles, inorganic particles, protein particles that can assemble themselves, combined antibody-drug particles, and small bubbles called nanovesicles, all aimed at targeting cancer stem cells. This paper talks about recent progress and opinions on using nanotechnology in stem cell research and therapy. It also covers how nanoparticles can help track, control, and improve the retention of stem cells.
Collapse