1
|
Lee GM, Kim TH, Ham G, Lee MJ, Oh S, Kang Y, Ahn H, Cha H, Chung S, Shim JW. Enhancing Dynamic Range in Low-Noise 2D-Integrated Organic Photodiodes by Mitigating Langevin Recombination. ACS NANO 2025; 19:4650-4662. [PMID: 39842878 DOI: 10.1021/acsnano.4c15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Organic photodiodes (OPDs) are a significant focus for the next-generation of light-detection technologies. However, organic semiconductors in OPDs still face key challenges, such as low carrier mobilities and limited efficiency in generating photon-induced signals, which affect the detectable resolution and dynamic range. In this study, the characterization of the interaction between organic polymeric bulk heterojunctions and two-dimensional (2D) transition metal dichalcogenides (MoS2) reveals an enhancement in photocurrent due to improved photogeneration dynamics (e.g., reduction of bimolecular recombination and enhancing charge carrier transfer). Consequently, the optimized 2D MoS2-additive OPD achieved an exceptionally high linear dynamic range (LDR) exceeding 174 dB and an outstanding specific detectivity (D*) of 3.21 × 1012 Jones, while reaching femto-scale noise levels. This presents the potential of state-of-the-art OPDs for various light signal applications.
Collapse
Affiliation(s)
- Gyeong Min Lee
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Tae Hyuk Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gayoung Ham
- Department of Energy Convergence and Climate Change, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Min Jong Lee
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seunghyun Oh
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yelim Kang
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Hyojung Cha
- Department of Energy Convergence and Climate Change, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Hydrogen and Renewable Energy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungjun Chung
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jae Won Shim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Pananusorn P, Sotome H, Uratani H, Ishiwari F, Phomphrai K, Saeki A. Molecular models of PM6 for non-fullerene acceptor organic solar cells: How DAD and ADA structures impact charge separation and charge recombination. J Chem Phys 2024; 161:184710. [PMID: 39530371 DOI: 10.1063/5.0227785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The quadrupole moment of a non-fullerene acceptor (NFA) generated by the constituent electron donor (D) and acceptor (A) units is a significant factor that affects the charge separation (CS) and charge recombination (CR) processes in organic photovoltaics (OPVs). However, its impact on p-type polymer domains remains unclear. In this study, we synthesized p-type molecules, namely acceptor-donor-acceptor (ADA) and donor-acceptor-donor (DAD), which are components of the benchmark PM6 polymer (D: benzodithiophene and A: dioxobenzodithiophene). Planar heterojunction films, a model of bulk heterojunction, were prepared using ADA, DAD, and PM6 as the bottom p-type layers and Y6 NFA as the top n-type layer. Flash-photolysis time-resolved microwave conductivity, femtosecond transient absorption spectroscopy, and quantum mechanical calculations were employed to probe the charge carrier dynamics. Our findings reveal that while the subtle difference in quadrupole moment and energy gradient of the p-type materials has a minimal influence on CS, the molecular type (ADA or DAD) significantly affects the bulk CR. This study expands the understanding of how the p-type component and its conformation at the p/n interface impact the CS and CR in OPVs, highlighting the critical role of molecular donors in optimizing device performance.
Collapse
Affiliation(s)
- Puttipong Pananusorn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Hiroki Uratani
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Fumitaka Ishiwari
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Khamphee Phomphrai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Xu T, Ran G, Luo Z, Chen Z, Lv J, Zhang G, Hu H, Zhang W, Yang C. Achieving 19.5% Efficiency via Modulating Electronic Properties of Peripheral Aryl-Substituted Small-Molecule Acceptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405476. [PMID: 39148187 DOI: 10.1002/smll.202405476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Indexed: 08/17/2024]
Abstract
The advancement of acceptors plays a pivotal role in determining photovoltaic performance. While previous efforts have focused on optimizing acceptor-donor-acceptor1-donor-acceptor (A-DA1-D-A)-typed acceptors by adjusting side chains, end groups, and conjugated extension of the electron-deficient central A1 unit, the systematic exploration of the impact of peripheral aryl substitutions, particularly with different electron groups, on the A1 unit and its influence on device performance is still lacking. In this study, three novel acceptors - QxTh, QxPh, and QxPy - with distinct substitutions on the quinoxaline (Qx) are designed and synthesized. Density functional theory (DFT) analyses reveal that QxPh, featuring a phenyl-substituted Qx, exhibits the smallest molecular binding energies and a tightest π···π stacking distance. Consequently, the PM6:QxPh device demonstrates a better power conversion efficiency (PCE) of 17.1% compared to the blends incorporating QxTh (16.4%) and QxPy (15.7%). This enhancement is primarily attributed to suppressed charge recombination, improved charge extraction, and more favorable molecular stacking and morphology. Importantly, introducing QxPh as a guest acceptor into the PM6:BTP-eC9 binary system yields an outstanding PCE of 19.5%, indicating the substantial potential of QxPh in advancing ternary device performance. The work provides deep insights into the expansion of high-performance organic photovoltaic materials through peripheral aryl substitution strategy.
Collapse
Affiliation(s)
- Tongle Xu
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangliu Ran
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Zhenghui Luo
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhanxiang Chen
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jie Lv
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, China
| | - Hanlin Hu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Boulevard, Shenzhen, 518055, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
- Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Chuluo Yang
- Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
4
|
Liu Z, Su Z, Yu B, Sun Y, Zhang J, Yu H. Biomaterial Improves the Stability of Perovskite Solar Cells by Passivating Defects and Inhibiting Ion Migration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31218-31227. [PMID: 38842482 DOI: 10.1021/acsami.4c06285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
With the rapid improvement of power conversion efficiency (PCE), perovskite solar cells (PSCs) have broad application prospects and their industrialization will be the next step. Nevertheless, the performance and long-term stability of the devices are limited by the defect-induced nonradiative recombination centers and ions' migration inside the perovskite films. Here, usnic acid (UA), an easy-to-obtain and efficient natural biomaterial with a hydroxyl functional group (-OH) and four carbonyl groups (-C═O) was added to MAPbI3 perovskite precursor to regulate the crystallization process by slowing the crystallization rate, thereby expanding the crystal size and preparing perovskite films with low defect density. In addition, UA anchors the uncoordinated Pb2+ and suppresses the migration of I-ions, which enhances the stability of the perovskite film. Consequently, an impressive PCE exceeding 20% was achieved for inverted structure MAPbI3-based PSCs. More impressively, the optimized PSCs maintained 78% of the initial PCE under air with high humidity (RH ≈ 65%, 25-30 °C) for 1000 h. UA can be extracted from the plant, usnea, making it inexpensive and easy to obtain. Our work demonstrates the application of the plant material in PSCs and their industrialization, which is significant nowadays.
Collapse
Affiliation(s)
- Zuwang Liu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Zhan Su
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Bo Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Yapeng Sun
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jiankai Zhang
- International School of Microelectronics, Dongguan University of Technology, Dongguan, Guangdong 523808, China
| | - Huangzhong Yu
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
5
|
Dai T, Tang A, Meng Y, Dong C, Cong P, Lu J, Du J, Zhong Y, Zhou E. Optimizing Molecular Crystallinity and Suppressing Electron-Phonon Coupling in Completely Non-Fused Ring Electron Acceptors for Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202403051. [PMID: 38499468 DOI: 10.1002/anie.202403051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
High open-circuit voltage (Voc) organic solar cells (OSCs) have received increasing attention because of their promising application in tandem devices and indoor photovoltaics. However, the lack of a precise correlation between molecular structure and stacking behaviors of wide band gap electron acceptors has greatly limited its development. Here, we adopted an asymmetric halogenation strategy (AHS) and synthesized two completely non-fused ring electron acceptors (NFREAs), HF-BTA33 and HCl-BTA33. The results show that AHS significantly enhances the molecular dipoles and suppresses electron-phonon coupling, resulting in enhanced intramolecular/intermolecular interactions and decreased nonradiative decay. As a result, PTQ10 : HF-BTA33 realizes a power conversion efficiency (PCE) of 11.42 % with a Voc of 1.232 V, higher than that of symmetric analogue F-BTA33 (PCE=10.02 %, Voc=1.197 V). Notably, PTQ10 : HCl-BTA33 achieves the highest PCE of 12.54 % with a Voc of 1.201 V due to the long-range ordered π-π packing and enhanced surface electrostatic interactions thereby facilitating exciton dissociation and charge transport. This work not only proves that asymmetric halogenation of completely NFREAs is a simple and effective strategy for achieving both high PCE and Voc, but also provides deeper insights for the precise molecular design of low cost completely NFREAs.
Collapse
Affiliation(s)
- Tingting Dai
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ailing Tang
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuhan Meng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Chuanqi Dong
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Peiqing Cong
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Lu
- College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jimin Du
- School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan Province, 455002, China
| | - Yufei Zhong
- School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|