1
|
Liu R, Guo Y, Yin G, Tuo H, Zhu Y, Yang W, Wang Y. Magnetic anchoring device assisted-laparoscopic sleeve gastrectomy versus conventional laparoscopic sleeve gastrectomy: A retrospective cohort study. Heliyon 2024; 10:e26875. [PMID: 38434329 PMCID: PMC10907795 DOI: 10.1016/j.heliyon.2024.e26875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Background Bariatric surgeries, including the sleeve gastrectomy, have been recognized as the most effectively treatment strategy for severe obesity. Magnetic devices have been successfully used in bariatric surgeries. Here, we intended to evaluate the safety and efficiency of magnetic anchoring device assisted-laparoscopic sleeve gastrectomy (MLSG), and to make a comparison of the short-term results between conventional laparoscopic sleeve gastrectomy (CLSG) and MLSG. Methods The retrospective cohort study was carried out by analyzing and summarizing the data from a database of routinely collected data. The cohort included the patients who underwent either CLSG (n = 120) or MLSG (n = 115) at a single center between January 2018 and December 2020 with a two-year follow-up. The effects of these two surgeries on the weight loss, resolution of comorbidities and quality of life (QOL) were analyzed. Results The two groups were similar in gender, age, body mass index, abdominal girth, as well as the type and proportion of comorbidities. And the cases in MLSG group had a markedly shorter time of operation (MLSG, 72.59 min vs. CLSG, 76.67 min; P = 0.003). Length of stay in hospital was significantly shorter in the MLSG group than that in the CLSG group (MLSG, 5.59 days vs. CLSG, 5.96 days; P = 0.016). Neither fatal event nor conversion to open surgery happened among all cases. There were no differences in terms of the postoperative complications between the two groups. Magnetic device-related mild hepatic lacerations occurred and were handled by hemostatic treatments in 3 cases. The QOL of patients in MLSG was better at 6-month after surgery, but there was no significant difference between the two groups at 1-year or 2-year after surgery. Conclusion Both MLSG and CLSG prove safe and effective, and the patients underwent MLSG have a shorter length of stay in hospital, and a better QOL during 6 months after surgery.
Collapse
Affiliation(s)
- Runkun Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yixian Guo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Guozhi Yin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hang Tuo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yifeng Zhu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wei Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
2
|
Liu P, Liu X, Yang L, Qian Y, Lu Q, Shi A, Wei S, Zhang X, Lv Y, Xiang J. Enhanced hemocompatibility and rapid magnetic anastomosis of electrospun small-diameter artificial vascular grafts. Front Bioeng Biotechnol 2024; 12:1331078. [PMID: 38328445 PMCID: PMC10847591 DOI: 10.3389/fbioe.2024.1331078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Background: Small-diameter (<6 mm) artificial vascular grafts (AVGs) are urgently required in vessel reconstructive surgery but constrained by suboptimal hemocompatibility and the complexity of anastomotic procedures. This study introduces coaxial electrospinning and magnetic anastomosis techniques to improve graft performance. Methods: Bilayer poly(lactide-co-caprolactone) (PLCL) grafts were fabricated by coaxial electrospinning to encapsulate heparin in the inner layer for anticoagulation. Magnetic rings were embedded at both ends of the nanofiber conduit to construct a magnetic anastomosis small-diameter AVG. Material properties were characterized by micromorphology, fourier transform infrared (FTIR) spectra, mechanical tests, in vitro heparin release and hemocompatibility. In vivo performance was evaluated in a rabbit model of inferior vena cava replacement. Results: Coaxial electrospinning produced PLCL/heparin grafts with sustained heparin release, lower platelet adhesion, prolonged clotting times, higher Young's modulus and tensile strength versus PLCL grafts. Magnetic anastomosis was significantly faster than suturing (3.65 ± 0.83 vs. 20.32 ± 3.45 min, p < 0.001) and with higher success rate (100% vs. 80%). Furthermore, magnetic AVG had higher short-term patency (2 days: 100% vs. 60%; 7 days: 40% vs. 0%) but similar long-term occlusion as sutured grafts. Conclusion: Coaxial electrospinning improved hemocompatibility and magnetic anastomosis enhanced implantability of small-diameter AVG. Short-term patency was excellent, but further optimization of anticoagulation is needed for long-term patency. This combinatorial approach holds promise for vascular graft engineering.
Collapse
Affiliation(s)
- Peng Liu
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xin Liu
- Department of Graduate School, Xi’an Medical University, Xi’an, Shaanxi, China
| | - Lifei Yang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yerong Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qiang Lu
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Aihua Shi
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shasha Wei
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xufeng Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yi Lv
- Center for Regenerative and Reconstructive Medicine, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Junxi Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|