1
|
Al-Noaman A, Rawlinson SCF. A bioactive and anti-bacterial nano-sized zirconium phosphate/GO (nZrP/GO) composite: Potential use as a coating for dental implants? Dent Mater 2024; 40:e72-e81. [PMID: 39117499 DOI: 10.1016/j.dental.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Dental implants fabricated from titanium have several limitations and therefore, alternative materials that fulfil the criteria of successful dental implant (bioactivity and anti-bacterial activity) need to be considered. Polyether ether ketone (PEEK) has been suggested to replace titanium implants. However, this material needs surface modification to meet the appropriate criteria. A nano-sized zirconium phosphate/GO (nZrP/GO) composite coating was prepared to improve PEEK's biological qualities. METHODS Polished and cleaned PEEK discs were coated with the composite of nZrP doped with 1.25 wt% GO by the soft-template method. To analyze the composite coating, X-ray, atomic force microscopy, and field emission scanning electron microscopy-energy dispersive spectroscopy were used. The adhesion of the coating to PEEK was measured by adhesive tape test. By measuring the optical contact angle, the coated and non-coated samples' differences in wettability were evaluated. Antimicrobial activity was evaluated against S. aureus and E. coli and cytotoxicity tested employing gingival fibroblasts and osteoblast-like cells. RESULTS The nZrP/GO composite coating was 23.45 µm thick, was irregular and attached strongly to the PEEK surface. Following coating, the water contact angle dropped to 34° and surface roughness to 13 nm. The coating reduced the count of bacteria two-fold and was non-cytotoxic to mammalian osteoblast-like cells and fibroblasts. A precipitation of nano-calcium-deficient apatite was observed on the surface of the nZrP/GO coating following a 28-day immersion in SBF. SIGNIFICANCE PEEK-coated with nZr/GO coating is a good candidate as dental implant.
Collapse
Affiliation(s)
- Ahmed Al-Noaman
- University of Babylon, College of Dentistry, Department of Oral Surgery, Babylon City, Iraq.
| | | |
Collapse
|
2
|
Durdu S, Sivlin D, Ozcan K, Kalkan S, Keles O, Usta M. Surface characterization and antibacterial efficiency of well-ordered TiO 2 nanotube surfaces fabricated on titanium foams. Sci Rep 2024; 14:618. [PMID: 38182771 PMCID: PMC10770057 DOI: 10.1038/s41598-024-51339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/03/2024] [Indexed: 01/07/2024] Open
Abstract
Titanium (Ti)-based implants are not compatible enough due to their bio-inert character, insufficient antibacterial capabilities and stress-shielding problem for dental and orthopaedic implant applications. Thus, this work focused to fabricate, analyze and improve antibacterial properties titanium dioxide (TiO2) nanotube array surfaces on Ti foam by anodic oxidation (AO) process. The well-ordered nanotube arrays with approximately 75 nm were successfully fabricated at 40 V for 1 h on Ti foams. Ti and O were observed as major elements on AO-coated Ti foam surfaces. In addition, the existence of TiO2 structure was proved on AO-coated foam Ti surfaces. For potential dental and orthopedic implant application, in vitro antibacterial properties were investigated versus Staphylococcus aureus and Escherichia coli. For both bacteria, antibacterial properties of TiO2 nanotube surface were greater than bare Ti foam. The bacterial inhibition versus Staphylococcus aureus and Escherichia coli of TiO2 nanotube surfaces are improved as 53.3% and 69.4% compared to bare Ti foam.
Collapse
Affiliation(s)
- Salih Durdu
- Department of Industrial Engineering, Engineering Faculty, Giresun University, 28200, Giresun, Turkey.
| | - Dila Sivlin
- Department of Materials and Metallurgical Engineering, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Kadriye Ozcan
- Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Selin Kalkan
- Department of Bioprocess Engineering, Giresun University, 28200, Giresun, Turkey
| | - Ozgul Keles
- Department of Materials and Metallurgical Engineering, Istanbul Technical University, 34469, Istanbul, Turkey.
| | - Metin Usta
- Department of Materials Science and Engineering, Gebze Technical University, 41400, Gebze/Kocaeli, Turkey.
- Aluminum Research Center (GTU-AAUM), Gebze Technical University, 41400, Gebze, Turkey.
| |
Collapse
|
3
|
Gadore V, Mishra SR, Ahmaruzzaman M. Bandgap engineering approach for synthesising photoactive novel Ag/HAp/SnS 2 for removing toxic anti-fungal pharmaceutical from aqueous environment. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132458. [PMID: 37717444 DOI: 10.1016/j.jhazmat.2023.132458] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
The present work shed light on synthesising a novel ternary Z-scheme Ag/HAp/SnS2 (AHS) nano photocatalyst to degrade metronidazole (MTZ) in wastewater through H2O2-assisted AOP under natural sunlight. HAp extracted from the fish scales of rohu fish through alkaline treatment was decorated with Ag nanoparticles using ascorbic acid as a bio-reductant. Tin disulphide (SnS2) was anchored over Ag/HAp to prevent agglomeration and enhance photocatalytic activity by delaying the electron-hole recombination rate. After 45 min of irradiation, a degradation efficiency of 98.85 ± 1.86% for 15 ppm MTZ could be achieved. The performance of the prepared photocatalyst in real wastewater was investigated by introducing several metal cations and anions in the photodegradation process. The degradation products were identified by HRLCMS analysis, and the breakdown mechanism of MTZ was proposed. The present study enlightens the importance of SnS2-based photocatalysts for organic pollutant degradation under natural sunlight through an advanced oxidation process. The characterization results showed that the enhanced photodegradation efficiency of AHS is attributed to the formation of an all-solid-state Z-scheme heterojunction with Ag nanoparticles acting as charge transfer medium and as electron accumulators helping in delaying charge recombination.
Collapse
Affiliation(s)
- Vishal Gadore
- Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India.
| |
Collapse
|
4
|
Singh I, Dixit K, Gupta P, George SM, Sinha N, Balani K. 3D-Printed Multifunctional Ag/CeO 2/ZnO Reinforced Hydroxyapatite-Based Scaffolds with Effective Antibacterial and Mechanical Properties. ACS APPLIED BIO MATERIALS 2023; 6:5210-5223. [PMID: 37955988 DOI: 10.1021/acsabm.3c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Conventional three-dimensional (3D)-printed hydroxyapatite (HA)-based constructs have limited utility in bone tissue engineering due to their poor mechanical properties, elevated risk of microbial infection, and limited pore interconnectivity. 3D printing of complex multiple components to fabricate fully interconnected scaffolds is a challenging task; here, in this work, we have developed a procedure for fabrication of printable ink for complex systems containing multinanomaterials, i.e., HAACZ (containing 1 wt % Ag, 4 wt % CeO2, and 6 wt % ZnO) with better shear thinning and shape retention properties. Moreover, 3D-printed HAACZ scaffolds showed a modulus of 143.8 GPa, a hardness of 10.8 GPa, a porosity of 59.6%, effective antibacterial properties, and a fully interconnected pore network to be an ideal construct for bone healing. Macropores with an average size of ∼469 and ∼433 μm within the scaffolds of HA and HAACZ and micropores with an average size of ∼0.6 and ∼0.5 μm within the strut of HA and HAACZ were developed. The distribution of fully interconnected micropores was confirmed using computerized tomography, whereas the distribution of micropores within the strut was visualized using Voronoi tessellation. The water contact angle studies revealed the most suitable hydrophilic range of water contact angles of ∼71.7 and ∼76.6° for HA and HAACZ, respectively. HAACZ scaffolds showed comparable apatite formation and cytocompatibility as that of HA. Antibacterial studies revealed effective antibacterial properties for the HAACZ scaffold as compared to HA. There was a decrease in bacterial cell density for HAACZ from 1 × 105 to 1.2 × 103 cells/mm2 against Gram-negative (Escherichia coli) and from 1.9 × 105 to 5.6 × 103 bacterial cells/mm2 against Gram-positive (Staphylococcus aureus). Overall, the 3D-printed HAACZ scaffold resulted in mechanical properties, comparable to those of the cancellous bone, interconnected macro- and microporosities, and excellent antibacterial properties, which could be utilized for bone healing.
Collapse
Affiliation(s)
- Indrajeet Singh
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Kartikeya Dixit
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Pankaj Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Suchi Mercy George
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Niraj Sinha
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Kantesh Balani
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
5
|
Safavi MS, Khalil-Allafi J, Restivo E, Ghalandarzadeh A, Hosseini M, Dacarro G, Malavasi L, Milella A, Listorti A, Visai L. Enhanced in vitro immersion behavior and antibacterial activity of NiTi orthopedic biomaterial by HAp-Nb 2O 5 composite deposits. Sci Rep 2023; 13:16045. [PMID: 37749260 PMCID: PMC10520115 DOI: 10.1038/s41598-023-43393-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
NiTi is a class of metallic biomaterials, benefit from superelastic behavior, high biocompatibility, and favorable mechanical properties close to that of bone. However, the Ni ion leaching, poor bioactivity, and antibacterial activity limit its clinical applications. In this study, HAp-Nb2O5 composite layers were PC electrodeposited from aqueous electrolytes containing different concentrations of the Nb2O5 particles, i.e., 0-1 g/L, to evaluate the influence of the applied surface engineering strategy on in vitro immersion behavior, Ni2+ ion leaching level, and antibacterial activity of the bare NiTi. Surface characteristics of the electrodeposited layers were analyzed using SEM, TEM, XPS, and AFM. The immersion behavior of the samples was comprehensively investigated through SBF and long-term PBS soaking. Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) infective reference bacteria were employed to address the antibacterial activity of the samples. The results illustrated that the included particles led to more compact and smoother layers. Unlike bare NiTi, composite layers stimulated apatite formation upon immersion in both SBF and PBS media. The concentration of the released Ni2+ ion from the composite layer, containing 0.50 g/L Nb2O5 was ≈ 60% less than that of bare NiTi within 30 days of immersion in the corrosive PBS solution. The Nb2O5-reinforced layers exhibited high anti-adhesive activity against both types of pathogenic bacteria. The hybrid metallic-ceramic system comprising HAp-Nb2O5-coated NiTi offers the prospect of a potential solution for clinical challenges facing the orthopedic application of NiTi.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran.
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100, Pavia, Italy.
| | - Jafar Khalil-Allafi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran.
| | - Elisa Restivo
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100, Pavia, Italy
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy
| | - Arash Ghalandarzadeh
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Milad Hosseini
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, P.O. Box: 51335-1996, Tabriz, Iran
| | - Giacomo Dacarro
- Department of Chemistry, Physical Chemistry section, and CHT, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Lorenzo Malavasi
- Department of Chemistry and INSTM, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonella Milella
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Andrea Listorti
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70125, Bari, Italy
| | - Livia Visai
- Molecular Medicine Department (DMM), Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/B, 27100, Pavia, Italy.
- Medicina Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100, Pavia, Italy.
| |
Collapse
|