1
|
Ali SH, Ali H, Aziz MA. Computational identification of PDL1 inhibitors and their cytotoxic effects with silver and gold nanoparticles. Sci Rep 2024; 14:26610. [PMID: 39496756 PMCID: PMC11535480 DOI: 10.1038/s41598-024-77868-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/25/2024] [Indexed: 11/06/2024] Open
Abstract
Immunotherapy is a promising treatment for cancer that aims to boost the immune system's response to cancer cells. This can be achieved by blocking Programmed cell death protein 1/Programmed death-ligand 1 (PD1/PDL1), which activates T cells. In this work, the aim was to find high-affinity drugs against PDL1 using computational tools and conjugate nanoparticles with them. The cytotoxic activity of the nanoparticle conjugated drugs was then tested. The screening of 100,000 drugs from the ZINC database and FDA-approved drugs was done computationally. The physicochemical properties and toxicity of the drugs were analyzed using SwissADME and ProTox-II, respectively. Silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using extracts of Catharanthus roseus flowers and Juglans regia shells, respectively. The characterization of AgNPs and AuNPs was performed using UV-Vis spectroscopy, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Their conjugation with the drugs Irinotecan, Imatinib, and Methotrexate was also confirmed using UV-Vis, FTIR, and Dynamic light scattering (DLS). The top screened drugs were ZINC1098661 and 3 FDA-approved drugs (Irinotecan, Imatinib, and Methotrexate). Docking studies revealed that Irinotecan had the highest binding affinity towards PDL1 when conjugated with silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). The Irinotecan-PDL1 complex was confirmed as the most stable through molecular dynamics simulations. The result of the methylthiazol tetrazolium (MTT) assay showed that conjugated AgNPs and AuNPs with Irinotecan had a higher toxic effect on the A549 cancer cell line than AgNPs and AuNPs conjugated with Imatinib. This study provides a promising avenue for further investigation and development of nanoparticle-drug conjugates as a potential cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Syed Hammad Ali
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Hiba Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Azhar Aziz
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, UP, 202002, India.
- Cancer Nanomedicine Consortium, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
2
|
Zenze M, Singh M. Receptor Targeting Using Copolymer-Modified Gold Nanoparticles for pCMV-Luc Gene Delivery to Liver Cancer Cells In Vitro. Int J Mol Sci 2024; 25:5016. [PMID: 38732235 PMCID: PMC11084699 DOI: 10.3390/ijms25095016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
The formulation of novel delivery protocols for the targeted delivery of genes into hepatocytes by receptor mediation is important for the treatment of liver-specific disorders, including cancer. Non-viral delivery methods have been extensively studied for gene therapy. Gold nanoparticles (AuNPs) have gained attention in nanomedicine due to their biocompatibility. In this study, AuNPs were synthesized and coated with polymers: chitosan (CS), and polyethylene glycol (PEG). The targeting moiety, lactobionic acid (LA), was added for hepatocyte-specific delivery. Physicochemical characterization revealed that all nano-formulations were spherical and monodispersed, with hydrodynamic sizes between 70 and 250 nm. Nanocomplexes with pCMV-Luc DNA (pDNA) confirmed that the NPs could bind, compact, and protect the pDNA from nuclease degradation. Cytotoxicity studies revealed that the AuNPs were well tolerated (cell viabilities > 70%) in human hepatocellular carcinoma (HepG2), embryonic kidney (HEK293), and colorectal adenocarcinoma (Caco-2) cells, with enhanced transgene activity in all cells. The inclusion of LA in the NP formulation was notable in the HepG2 cells, which overexpress the asialoglycoprotein receptor on their cell surface. A five-fold increase in luciferase gene expression was evident for the LA-targeted AuNPs compared to the non-targeted AuNPs. These AuNPs have shown potential as safe and suitable targeted delivery vehicles for liver-directed gene therapy.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
3
|
Nayak V, Patra S, Singh KR, Ganguly B, Kumar DN, Panda D, Maurya GK, Singh J, Majhi S, Sharma R, Pandey SS, Singh RP, Kerry RG. Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & engineered CAR T-cells mediated therapeutics. ENVIRONMENTAL RESEARCH 2023; 235:116573. [PMID: 37437865 DOI: 10.1016/j.envres.2023.116573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.
Collapse
Affiliation(s)
- Vinayak Nayak
- Indian Council of Agricultural Research- National Institute on Foot and Mouth Disease- International Center for Foot and Mouth Disease, Bhubaneswar, Odisha, India
| | - Sushmita Patra
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410210, India
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Bristy Ganguly
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Das Nishant Kumar
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Deepak Panda
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanatan Majhi
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Ravindra Pratap Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| | - Rout George Kerry
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Cheng Y, Qu Z, Jiang Q, Xu T, Zheng H, Ye P, He M, Tong Y, Ma Y, Bao A. Functional Materials for Subcellular Targeting Strategies in Cancer Therapy: Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305095. [PMID: 37665594 DOI: 10.1002/adma.202305095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Indexed: 09/05/2023]
Abstract
Neoadjuvant and adjuvant therapies have made significant progress in cancer treatment. However, tumor adjuvant therapy still faces challenges due to the intrinsic heterogeneity of cancer, genomic instability, and the formation of an immunosuppressive tumor microenvironment. Functional materials possess unique biological properties such as long circulation times, tumor-specific targeting, and immunomodulation. The combination of functional materials with natural substances and nanotechnology has led to the development of smart biomaterials with multiple functions, high biocompatibilities, and negligible immunogenicities, which can be used for precise cancer treatment. Recently, subcellular structure-targeting functional materials have received particular attention in various biomedical applications including the diagnosis, sensing, and imaging of tumors and drug delivery. Subcellular organelle-targeting materials can precisely accumulate therapeutic agents in organelles, considerably reduce the threshold dosages of therapeutic agents, and minimize drug-related side effects. This review provides a systematic and comprehensive overview of the research progress in subcellular organelle-targeted cancer therapy based on functional nanomaterials. Moreover, it explains the challenges and prospects of subcellular organelle-targeting functional materials in precision oncology. The review will serve as an excellent cutting-edge guide for researchers in the field of subcellular organelle-targeted cancer therapy.
Collapse
Affiliation(s)
- Yanxiang Cheng
- Department of Gynecology, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Zhen Qu
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Qian Jiang
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Tingting Xu
- Department of Clinical Laboratory, Wuhan Blood Center (WHBC), No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Hongyun Zheng
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Peng Ye
- Department of Pharmacy, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Mingdi He
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| | - Yan Ma
- Department of Blood Transfusion Research, Wuhan Blood Center (WHBC), HUST-WHBC United Hematology Optical Imaging Center, No.8 Baofeng 1st Road, Wuhan, Hubei, 430030, P. R. China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, No.238 Jiefang Road, Wuchang, Wuhan, 430060, P. R. China
| |
Collapse
|