1
|
Hein M, Mehnert A, Josephine F, Athwal A, Yu DY, Balaratnasingam C. Predictors of Peripheral Retinal Non-Perfusion in Clinically Significant Diabetic Macular Edema. J Clin Med 2024; 14:52. [PMID: 39797135 PMCID: PMC11722121 DOI: 10.3390/jcm14010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Diabetic macular edema (DME) is a significant cause of vision loss. The development of peripheral non-perfusion (PNP) might be associated with the natural course, severity, and treatment of DME. The present study seeks to understand the predictive power of central macular changes and clinico-demographic features for PNP in patients with clinically significant DME. Methods: A prospective study using contemporaneous multi-modal retinal imaging was performed. In total, 48 eyes with DME from 33 patients were enrolled. Demographic, clinical history, laboratory measures, ultrawide field photography, fluorescein angiography, optical coherence tomography (OCT), and OCT angiography results were acquired. Anatomic and vascular features of the central macula and peripheral retina were quantified from retinal images. Separate (generalized) linear mixed models were used to assess differences between PNP present and absent groups. Mixed effects logistic regression was used to assess which features have predictive power for PNP. Results: Variables with significant differences between eyes with and without PNP were insulin use (p = 0.0001), PRP treatment (p = 0.0003), and diffuse fluorescein leakage (p = 0.013). Importantly, there were no significant differences for any of the macular vascular metrics including vessel density (p = 0.15) and foveal avascular zone (FAZ) area (p = 0.58 and capillary tortuosity (p = 0.55). Features with significant predictive power (all p < 0.001) were subretinal fluid, FAZ eccentricity, ellipsoid zone disruption, past anti-VEGF therapy, insulin use, and no ischemic heart disease. Conclusions: In the setting of DME, macular vascular changes did not predict the presence of PNP. Therefore, in order to detect peripheral non-perfusion in DME, our results implicate the importance of peripheral retinal vascular imaging.
Collapse
Affiliation(s)
- Martin Hein
- Lions Eye Institute, Perth, WA 6009, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA 6009, Australia
| | - Andrew Mehnert
- Lions Eye Institute, Perth, WA 6009, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA 6009, Australia
| | | | - Arman Athwal
- School of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| | - Dao-Yi Yu
- Lions Eye Institute, Perth, WA 6009, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA 6009, Australia
| | - Chandrakumar Balaratnasingam
- Lions Eye Institute, Perth, WA 6009, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA 6009, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, WA 6009, Australia
| |
Collapse
|
2
|
Vagiakis I, Bakirtzis C, Andravizou A, Pirounides D. Unlocking the Potential of Vessel Density and the Foveal Avascular Zone in Optical Coherence Tomography Angiography as Biomarkers in Alzheimer's Disease. Healthcare (Basel) 2024; 12:1589. [PMID: 39201148 PMCID: PMC11353459 DOI: 10.3390/healthcare12161589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease is the most prevalent form of dementia. Apart from its traditional clinical diagnostic methods, novel ocular imaging biomarkers have the potential to significantly enhance the diagnosis of Alzheimer's disease. Ophthalmologists might be able to play a crucial role in this multidisciplinary approach, aiding in the early detection and diagnosis of Alzheimer's disease through the use of advanced retinal imaging techniques. This systematic literature review the utilization of optical coherence tomography angiography biomarkers, specifically vessel density and the foveal avascular zone, for the diagnosis of Alzheimer's disease. A comprehensive search was performed across multiple academic journal databases, including 11 relevant studies. The selected studies underwent thorough analysis to assess the potential of these optical coherence tomography angiography biomarkers as diagnostic tools for Alzheimer's disease. The assessment of vessel density and the foveal avascular zone have emerged as a promising avenue for identifying and diagnosing Alzheimer's disease. However, it is imperative to acknowledge that further targeted investigations are warranted to address the inherent limitations of the existing body of literature. These limitations encompass various factors such as modest sample sizes, heterogeneity among study populations, disparities in optical coherence tomography angiography imaging protocols, and inconsistencies in the reported findings. In order to establish the clinical utility and robustness of these biomarkers in Alzheimer's disease diagnosis, future research endeavors should strive to overcome these limitations by implementing larger-scale studies characterized by standardized protocols and comprehensive assessments.
Collapse
Affiliation(s)
- Iordanis Vagiakis
- Department of Ophthalmology, AHEPA University Hospital, 54626 Thessaloniki, Greece;
| | - Christos Bakirtzis
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Athina Andravizou
- Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece;
| | - Demetrios Pirounides
- Department of Ophthalmology, AHEPA University Hospital, 54626 Thessaloniki, Greece;
| |
Collapse
|
3
|
Ma J, Gelie N, Zhu M, Ma X, Han C. Quantifying ocular microcirculation in hypertension patients with carotid artery stenosis. Front Neurosci 2024; 18:1361413. [PMID: 39104611 PMCID: PMC11298343 DOI: 10.3389/fnins.2024.1361413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Background Carotid artery stenosis (CAS) is one of the most common macrovascular complications of hypertension. The ophthalmic artery springs from the internal carotid artery; however, the effect of CAS on ocular microcirculation has not been quantified in hypertension patients. This study aimed to quantify ocular microcirculation metrics in hypertension with CAS (HCAS) patients and to explore the relationship between micro- and macroangiopathy in hypertension. Methods All participants (community-based) underwent detailed assessments, including carotid ultrasonography, optical coherence tomography angiography (OCTA), and enhanced depth imaging (EDI)-OCT. CAS was diagnosed using carotid ultrasonography. Retinal microcirculation metrics, including vessel density (VD), skeleton density (SD), fractal dimension (FD), and foveal avascular zone (FAZ), were quantified using OCTA and ImageJ software. Choroidal microcirculation metrics, including subfoveal choroidal thickness (SFCT), luminal area (LA), and choroidal vascularity index (CVI), were quantified using EDI-OCT and ImageJ. Retinal vessel caliber metrics, including central retinal artery equivalent (CRAE), central retinal vein equivalent (CRVE), and artery/vein ratio (AVR), were calculated using revised formulas. The above metrics were compared among the HCAS group, hypertension with no CAS (HNCAS) group, and healthy control group. The mutual effects between ocular metrics and CAS were evaluated using regression analyses. Results In a comparison of the HCAS vs. HNCAS groups, retinal metrics including VD, SD, FD, and choroidal metrics including CVI and LA were significantly decreased in the HCAS group (all p < 0.05); however, FAZ, SFCT, and retinal vessel caliber metrics including CRAE, CRVE, and AVR were comparable between groups (all p > 0.05). In a comparison of HNCAS and the healthy control group, VD, SD, and CRAE showed that AVR was significantly decreased in the HNCAS group (all p < 0.05); meanwhile, choroidal metrics were comparable between groups (all p > 0.05). Linear regression analyses showed that intima-media thickness (IMT) (p = 0.01) and peak systolic velocity (PSV) (p = 0.002) were negatively related to retinal VD in hypertension patients. Logistic regression analyses disclosed that older age (p < 0.001), smoking history (p = 0.002), lower VD (p = 0.04), SD (p = 0.02), and CVI (p < 0.001) were related to the presence of CAS in hypertension patients. Conclusion CAS in hypertension-induced hypoperfusion in retinal and choroidal microcirculation and the decreased retinal VD and choroidal CVI were significantly associated with the presence of CAS in patients with hypertension, suggesting that hypertension macro- and microangiopathy were mutually affected and share the common pathophysiology. Furthermore, OCT could be a useful tool to assess hypertension patient's CAS risk profiles in a non-invasive way.
Collapse
Affiliation(s)
- Jinlan Ma
- Department of Ophthalmology, Affiliated Hospital of Qinghai University, Xining, China
| | - NanJia Gelie
- Department of Ultrasound, Affiliated Hospital of Qinghai University, Xining, China
| | - Mingjuan Zhu
- Department of Ophthalmology, Traditional Chinese Medicine Hospital of Qinghai Province, Xining, China
| | - Xiaolu Ma
- Department of Ophthalmology, Haidong First People’s Hospital, Pingan, China
| | - Changjing Han
- Department of Ophthalmology, Affiliated Hospital of Qinghai University, Xining, China
| |
Collapse
|
4
|
Nouri H, Abtahi SH, Mazloumi M, Samadikhadem S, Arevalo JF, Ahmadieh H. Optical coherence tomography angiography in diabetic retinopathy: A major review. Surv Ophthalmol 2024; 69:558-574. [PMID: 38521424 DOI: 10.1016/j.survophthal.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Diabetic retinopathy (DR) is characterized by retinal vasculopathy and is a leading cause of visual impairment. Optical coherence tomography angiography (OCTA) is an innovative imaging technology that can detect various pathologies and quantifiable changes in retinal microvasculature. We briefly describe its functional principles and advantages over fluorescein angiography and perform a comprehensive review on its clinical applications in the screening or management of people with prediabetes, diabetes without clinical retinopathy (NDR), nonproliferative DR (NPDR), proliferative DR (PDR), and diabetic macular edema (DME). OCTA reveals early microvascular alterations in prediabetic and NDR eyes, which may coexist with sub-clinical neuroretinal dysfunction. Its applications in NPDR include measuring ischemia, detecting retinal neovascularization, and timing of early treatment through predicting the risk of retinopathy worsening or development of DME. In PDR, OCTA helps characterize the flow within neovascular complexes and evaluate their progression or regression in response to treatment. In eyes with DME, OCTA perfusion parameters may be of predictive value regarding the visual and anatomical gains associated with treatment. We further discussed the limitations of OCTA and the benefits of its incorporation into an updated DR severity scale.
Collapse
Affiliation(s)
- Hosein Nouri
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed-Hossein Abtahi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Mazloumi
- Eye Research Center, Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sanam Samadikhadem
- Department of Ophthalmology, Imam Hossein Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - J Fernando Arevalo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Hein M, Qambari H, An D, Balaratnasingam C. Current understanding of subclinical diabetic retinopathy informed by histology and high-resolution in vivo imaging. Clin Exp Ophthalmol 2024; 52:464-484. [PMID: 38363022 DOI: 10.1111/ceo.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/17/2024]
Abstract
The escalating incidence of diabetes mellitus has amplified the global impact of diabetic retinopathy. There are known structural and functional changes in the diabetic retina that precede the fundus photography abnormalities which currently are used to diagnose clinical diabetic retinopathy. Understanding these subclinical alterations is important for effective disease management. Histology and high-resolution clinical imaging reveal that the entire neurovascular unit, comprised of retinal vasculature, neurons and glial cells, is affected in subclinical disease. Early functional manifestations are seen in the form of blood flow and electroretinography disturbances. Structurally, there are alterations in the cellular components of vasculature, glia and the neuronal network. On clinical imaging, changes to vessel density and thickness of neuronal layers are observed. How these subclinical disturbances interact and ultimately manifest as clinical disease remains elusive. However, this knowledge reveals potential early therapeutic targets and the need for imaging modalities that can detect subclinical changes in a clinical setting.
Collapse
Affiliation(s)
- Martin Hein
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Hassanain Qambari
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Dong An
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
| | - Chandrakumar Balaratnasingam
- Physiology and Pharmacology Group, Lions Eye Institute, Perth, Western Australia, Australia
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Western Australia, Australia
- Department of Ophthalmology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
6
|
Crincoli E, Sacconi R, Querques L, Querques G. OCT angiography 2023 update: focus on diabetic retinopathy. Acta Diabetol 2024; 61:533-541. [PMID: 38376579 DOI: 10.1007/s00592-024-02238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
Optical coherence tomography angiography (OCTA) has become part of the clinical practice and its growing applications are in continuous development. Coherently with the growing concern about the human and economic cost of diabetes, diabetic retinopathy (DR) was the most popular topic for OCTA studies in the past year. The analysis of the literature reveals that applications of OCTA in DR are in continuous growth. In particular, ultrawide field (UWF) OCTA and artificial intelligence (AI) based on OCTA images are affirming as the new frontiers of scientific research in the field. Diagnostic accuracy of AI methods based on OCTA is equal or superior to the one based on OCT methods and also bears potential to detect systemic associations. UWF OCTA is noninvasive method that is reaching similar accuracy of FA in detection of neovascularization and intraretinal microvascular abnormalities (IRMAs) and has allowed better characterization of microvascular peripherical changes in DR. Lastly, deep capillary plexus (DCP) characteristics seem to play a pivotal role in the development of diabetic macular edema (DME) and refinement of biomarkers for different phenotypes of DME and diabetic macular ischemia (DMI) is currently on its way.
Collapse
Affiliation(s)
- Emanuele Crincoli
- Department of Ophthalmology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Riccardo Sacconi
- Department of Ophthalmology, University Vita-Salute IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Lea Querques
- Department of Ophthalmology, University Vita-Salute IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Giuseppe Querques
- Department of Ophthalmology, University Vita-Salute IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
| |
Collapse
|
7
|
Hernandez RJ, Madhusudhan S, Zheng Y, El-Bouri WK. Linking Vascular Structure and Function: Image-Based Virtual Populations of the Retina. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 38683566 PMCID: PMC11059806 DOI: 10.1167/iovs.65.4.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose This study explored the relationship among microvascular parameters as delineated by optical coherence tomography angiography (OCTA) and retinal perfusion. Here, we introduce a versatile framework to examine the interplay between the retinal vascular structure and function by generating virtual vasculatures from central retinal vessels to macular capillaries. Also, we have developed a hemodynamics model that evaluates the associations between vascular morphology and retinal perfusion. Methods The generation of the vasculature is based on the distribution of four clinical parameters pertaining to the dimension and blood pressure of the central retinal vessels, constructive constrained optimization, and Voronoi diagrams. Arterial and venous trees are generated in the temporal retina and connected through three layers of capillaries at different depths in the macula. The correlations between total retinal blood flow and macular flow fraction and vascular morphology are derived as Spearman rank coefficients, and uncertainty from input parameters is quantified. Results A virtual cohort of 200 healthy vasculatures was generated. Means and standard deviations for retinal blood flow and macular flow fraction were 20.80 ± 7.86 µL/min and 15.04% ± 5.42%, respectively. Retinal blood flow was correlated with vessel area density, vessel diameter index, fractal dimension, and vessel caliber index. The macular flow fraction was not correlated with any morphological metrics. Conclusions The proposed framework is able to reproduce vascular networks in the macula that are morphologically and functionally similar to real vasculature. The framework provides quantitative insights into how macular perfusion can be affected by changes in vascular morphology delineated on OCTA.
Collapse
Affiliation(s)
- Rémi J. Hernandez
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Savita Madhusudhan
- St Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Yalin Zheng
- St Paul's Eye Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Wahbi K. El-Bouri
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Blanot M, Casaroli-Marano RP, Mondéjar-Medrano J, Sallén T, Ramírez E, Segú-Vergés C, Artigas L. Aflibercept Off-Target Effects in Diabetic Macular Edema: An In Silico Modeling Approach. Int J Mol Sci 2024; 25:3621. [PMID: 38612432 PMCID: PMC11011561 DOI: 10.3390/ijms25073621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Intravitreal aflibercept injection (IAI) is a treatment for diabetic macular edema (DME), but its mechanism of action (MoA) has not been completely elucidated. Here, we aimed to explore IAI's MoA and its multi-target nature in DME pathophysiology with an in silico (computer simulation) disease model. We used the Therapeutic Performance Mapping System (Anaxomics Biotech property) to generate mathematical models based on the available scientific knowledge at the time of the study, describing the relationship between the modulation of vascular endothelial growth factor receptors (VEGFRs) by IAI and DME pathophysiological processes. We also undertook an enrichment analysis to explore the processes modulated by IAI, visualized the effectors' predicted protein activity, and specifically evaluated the role of VEGFR1 pathway inhibition on DME treatment. The models simulated the potential pathophysiology of DME and the likely IAI's MoA by inhibiting VEGFR1 and VEGFR2 signaling. The action of IAI through both signaling pathways modulated the identified pathophysiological processes associated with DME, with the strongest effects in angiogenesis, blood-retinal barrier alteration and permeability, and inflammation. VEGFR1 inhibition was essential to modulate inflammatory protein effectors. Given the role of VEGFR1 signaling on the modulation of inflammatory-related pathways, IAI may offer therapeutic advantages for DME through sustained VEGFR1 pathway inhibition.
Collapse
Affiliation(s)
- Morgane Blanot
- Anaxomics Biotech S.L., 08007 Barcelona, Spain; (M.B.); (E.R.); (C.S.-V.); (L.A.)
| | - Ricardo Pedro Casaroli-Marano
- Department of Surgery (FMCS), Universitat de Barcelona, 08007 Barcelona, Spain
- Hospital Clínic de Barcelona (IDIBAPS), Universitat de Barcelona, 08007 Barcelona, Spain
| | | | - Thaïs Sallén
- Bayer Hispania S.L., 08970 Sant Joan Despí, Spain; (J.M.-M.); (T.S.)
| | - Esther Ramírez
- Anaxomics Biotech S.L., 08007 Barcelona, Spain; (M.B.); (E.R.); (C.S.-V.); (L.A.)
| | - Cristina Segú-Vergés
- Anaxomics Biotech S.L., 08007 Barcelona, Spain; (M.B.); (E.R.); (C.S.-V.); (L.A.)
- Research Programme on Biomedical Informatics (GRIB), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Laura Artigas
- Anaxomics Biotech S.L., 08007 Barcelona, Spain; (M.B.); (E.R.); (C.S.-V.); (L.A.)
| |
Collapse
|