1
|
Hussain MS, Moglad E, Goyal A, Rekha MM, Sharma GC, Jayabalan K, Sahoo S, Devi A, Goyal K, Gupta G, Shahwan M, Alzarea SI, Kazmi I. Tumor-educated platelets in lung cancer. Clin Chim Acta 2025; 573:120307. [PMID: 40228574 DOI: 10.1016/j.cca.2025.120307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Non-invasive diagnostic monitoring techniques have become essential for treating lung cancer (LC), which continues to be the primary cause of cancer-related death worldwide. The new diagnostic biomarkers called tumour-educated platelets (TEPs) show strong prospects for providing vital information about tumor biology, tumor spread pathways, and treatment reaction patterns. Despite lacking a nucleus, platelets exhibit an active RNA profile that develops through interactions with tumor-derived compounds and the tumor microenvironments (TME). This review explains platelet-tumour interaction regulatory mechanisms while focusing on platelet contributions toward cancer development, immune system avoidance, and blood clot formation. The detection and classification of LC show promise through the analysis of RNA molecules extracted from platelets that encompass mRNAs and non-coding RNAs. RNA sequencing technology based on TEP demonstrates excellent diagnostic power by correctly identifying LC patients alongside their oncogenic alterations of EGFR, KRAS, and ALK. Treatment predictions have proven successful using platelet RNA profiles, specifically in immunotherapy and targeted therapy. Integrating next-generation sequencing with machine learning and artificial intelligence enhances TEP-based diagnostic tools, improving detection accuracy. Standardizing platelet extraction methods and vesicle purification from tumor material needs better development for effective and affordable clinical use. Future investigations should combine TEPs with circulating tumor DNA and exosomal RNA markers to enhance both earliest-stage LC diagnosis and patient-specific therapeutic approaches. TEPs introduce a groundbreaking technique in oncology since they can transform non-invasive medical diagnostics and therapeutic monitoring for cancer.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Girish Chandra Sharma
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Karthikeyan Jayabalan
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Samir Sahoo
- Department of General Medicine IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Anita Devi
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307 Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Sromek M, Głogowski M, Chechlińska M, Kulińczak M, Zajdel M, Żeber-Lubecka N, Bałabas A, Szafron ŁM, Kulecka M, Siwicki JK. Persistent and novel changes in plasma microRNA profiles in patients with non-small cell lung cancer following tumour resection. Transl Lung Cancer Res 2025; 14:677-706. [PMID: 40248723 PMCID: PMC12000959 DOI: 10.21037/tlcr-24-626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/08/2025] [Indexed: 04/19/2025]
Abstract
Background Non-small cell lung cancer (NSCLC) accounts for 80% of lung cancers, the leading cause of cancer mortality. microRNAs (miRNA, miR) have emerged as important components of carcinogenesis and promising biomarkers. We aimed to analyse global plasma miRs in NSCLC patients before and at least one year after tumour resection. Methods Plasma was collected from the peripheral blood of 24 donors without cancer and of NSCLC patients before surgery (n=36) and at least 1 year after surgery (n=12). Next-generation sequencing (NGS)-based miR profiling was performed. Patients were followed-up for 4 to 12 years after surgery to assess disease recurrence. Results Untreated NSCLC patients exhibited significant changes in plasma miR levels compared to cancer-free donors (48 up- and 17 down-regulated miRs). miR profiles in patients with adenocarcinoma (ADC) (n=18) and squamous cell carcinoma (SCC) significantly differed (16 and 86 miRs up-, and 15 and 16 miRs down-regulated, respectively). A subset of pre-surgery deregulated miRs was found to be associated with recurrence (49 miRs). Six miRs were shown to have independent prognostic value. After tumour resection, some pre-surgery miR alterations returned to control levels (18 miRs), some others persisted (27 miRs), while also novel plasma miR changes emerged (75 miRs) in patients with no clinical evidence of recurrence. Conclusions Untreated NSCLC patients present deregulated plasma miRs, some of which may have a potential of prognostic markers. After tumour excision plasma miR profiles change, some miR levels normalise, some changes persist and novel miR changes are observed despite no clinical symptoms of recurrence. Plasma miR profiles in NSCLC patients may suggest systemic abnormalities predisposing to lung cancer and/or reflect a systemic response to pre-cancer/dormant cancer cells.
Collapse
Affiliation(s)
- Maria Sromek
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maciej Głogowski
- Department of Lung Cancer and Chest Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Magdalena Chechlińska
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mariusz Kulińczak
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michalina Zajdel
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Łukasz M. Szafron
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan K. Siwicki
- Department of Cancer Biology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
3
|
Liatsou E, Kollias I, Trapali M, Tsilimigras DI, Gavriatopoulou M, Ntanasis-Stathopoulos I. Liquid Biopsies in the Early Diagnosis, Prognosis, and Tailored Treatment of Colorectal Cancer. Cancers (Basel) 2025; 17:927. [PMID: 40149264 PMCID: PMC11940745 DOI: 10.3390/cancers17060927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/08/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Liquid biopsies provide a less-invasive option to tissue biopsies for the early diagnosis, prognosis, and tailored therapy of colorectal cancer (CRC). CRC is a major cause of cancer-related death, and early identification is essential for improving patient outcomes. REVIEW Conventional diagnostic techniques, including colonoscopy and tissue biopsy, may be enhanced by liquid biopsies that examine circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), and other indicators present in body fluids. These markers provide significant insights into tumor biology, heterogeneity, and therapeutic response. CTCs detected in early-stage CRC have prognostic significance for disease recurrence and survival, while ctDNA investigation may uncover genetic mutations, epigenetic alterations, and tumor development. The identification of ctDNA in minimal residual disease (MRD) postsurgery correlates with an elevated risk of recurrence and unfavorable prognosis, underscoring its use in assessing treatment effectiveness. Furthermore, non-coding RNAs (ncRNAs) contained inside EVs provide potential prospective biomarkers and therapeutic targets, facilitating diagnosis and treatment assessment. Notwithstanding the potential of liquid biopsies, obstacles persist in assay standardization, sensitivity enhancement, and the management of tumor heterogeneity. Additional extensive research is required to determine their function in clinical practice. CONCLUSION Overall, liquid biopsies serve as a potential instrument for real-time monitoring, evaluating therapy responses, and directing individualized therapeutic strategies in CRC patients.
Collapse
Affiliation(s)
- Efstathia Liatsou
- CAST, Center of Allogenic Transplantation and Cell Therapies, Karolinska University, 17177 Stockholm, Sweden;
| | - Ioannis Kollias
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (M.G.)
| | - Maria Trapali
- Laboratory of Chemistry, Biochemistry and Cosmetic Science, Department of Biomedical Medicine, University of West Attica, 12243 Egaleo, Greece;
| | - Diamantis I. Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA;
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (M.G.)
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, 11528 Athens, Greece; (I.K.); (M.G.)
| |
Collapse
|
4
|
ALMatrafi TA. Deciphering the role of TMEM164 in autophagy-mediated ferroptosis and immune modulation in non-small cell lung cancer. Cell Immunol 2025; 409-410:104915. [PMID: 39798196 DOI: 10.1016/j.cellimm.2024.104915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/13/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) remains one of the most prevalent and deadly malignancies. Despite advancements in molecular therapies and diagnostic methods, the 5-year survival rate for lung adenocarcinoma patients remains unacceptably low, highlighting the urgent need for novel therapeutic strategies. Ferroptosis, a distinct form of regulated cell death, has emerged as a promising target in cancer treatment. This study investigates the role of TMEM164, a membrane protein, in promoting ferroptosis and modulating anti-tumor immunity in NSCLC, aiming to elucidate its therapeutic potential. METHODS Using publicly available datasets, we performed bioinformatics analyses to identify TMEM164-regulated genes involved in ferroptosis. In addition, in vitro and in vivo assays were conducted to assess the impact of TMEM164 on cellular functions in NSCLC. RESULTS Functional assays demonstrated that TMEM164 overexpression significantly inhibited invasion, migration, and cell proliferation in both in vitro and in vivo models. TMEM164 was also found to induce ferroptosis in NSCLC cells by promoting autophagy. Specifically, we identified a mechanism whereby TMEM164 mediates ATG5-dependent autophagosome formation, leading to the degradation of ferritin, GPX4, and lipid droplets. This degradation facilitated iron accumulation and lipid peroxidation, which triggered iron-dependent cell death. Notably, co-administration of TMEM164 upregulation and anti-PD-1 antibodies exhibited synergistic anti-tumor effects in a mouse model. CONCLUSION These findings suggest that targeting TMEM164 to enhance ferroptosis and stimulate anti-tumor immunity may inhibit NSCLC progression. Consequently, TMEM164 holds promise as a new therapeutic target for NSCLC treatment.
Collapse
|
5
|
Xie W, Hu J, Zhao Z, Lu H, Han Y, Li B, Ouyang Z. Development of an accurate breast cancer detection classifier based on platelet RNA. Sci Rep 2024; 14:30733. [PMID: 39730431 DOI: 10.1038/s41598-024-80175-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 11/15/2024] [Indexed: 12/29/2024] Open
Abstract
Platelets possess cancer-induced reprogramming properties, thereby contributing to RNA profile alterations and further cancer progression, while the former is considered a promising biosource for cancer detection. Hence, tumor-educated platelets (TEP) are considered a prospective novel method for early breast cancer (BC) screening. Our study integrated the data from 276 patients with untreated BC, 95 with benign disease controls, 214 healthy controls, and 2 who underwent mastectomy in Chinese and European cohorts to develop a 10-biomarker diagnostic model. The model demonstrated high diagnostic performance for BC in an independent test set (n = 177) with an area under the curve of 0.957. The sensitivity for BC diagnosis was 89.2%, with 100% specificity in asymptomatic controls, while that for the symptomatic group, including benign tumors and inflammatory diseases, was 62.1%. The model demonstrated substantial accuracy for stages 0-III BC (80% for stage 0 [n = 5], 83.3% for stage I [n = 12], 94.6% for stage II [n = 37], and 88.9% for stage III [n = 9]) and precisely helped determine residual cancer in two patients who underwent mastectomy. Moreover, our developed classifiers distinguish different BC subtypes properly. In summary, we created and tested a new TEP-RNA-based BC diagnostic model that was confirmed valid and demonstrated high efficiency in detecting early-stage BC and heterogeneous subtypes, including recurrent tumors. However, these results warrant more validation in larger population-based prospective studies before clinical implementation.
Collapse
Affiliation(s)
- Wenlong Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Jie Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zehang Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Medicine, Department of Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huixin Lu
- Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China
| | - Yu Han
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China
| | - Boan Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network and Engineering Research Center of Molecular Diagnostics of the Ministry of Education, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Zhong Ouyang
- School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Tao XY, Li QQ, Zeng Y. Clinical application of liquid biopsy in colorectal cancer: detection, prediction, and treatment monitoring. Mol Cancer 2024; 23:145. [PMID: 39014366 PMCID: PMC11250976 DOI: 10.1186/s12943-024-02063-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies affecting the gastrointestinal tract and is ranked third among cancers with the highest incidence and second-highest mortality rate worldwide. CRC exhibits a slow progression providing a wide treatment window. The currently employed CRC screening methods have shown great potential to prevent CRC and reduce CRC-related morbidity and mortality. The diagnosis of CRC is achieved by colonoscopy and tissue biopsy, with studies showing that liquid biopsy is more effective in detecting and diagnosing early CRC patients. Increasing number of studies have shown that the tumor components shed into circulating blood can be detected in liquid form, and can be applied in the clinical management of CRC. Analysis of circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), or tumor-associated platelets (TEPs) in the blood can be used for early screening and diagnosis of CRC, aid tumor staging, treatment response monitoring, and prediction of CRC recurrence and metastasis in a minimally invasive manner. This chapter provides an updated review of CTCs, ctDNA, and TEPs as novel biomarkers for CRC, highlighting their strengths and limitations.
Collapse
Affiliation(s)
- Xiang-Yuan Tao
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Qian-Qian Li
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yong Zeng
- Translational Medicine Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
- School of Pharmacy, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Gill JS, Bansal B, Poojary R, Singh H, Huang F, Weis J, Herman K, Schultz B, Coban E, Guo K, Mathur R. Immunological Signatures for Early Detection of Human Head and Neck Squamous Cell Carcinoma through RNA Transcriptome Analysis of Blood Platelets. Cancers (Basel) 2024; 16:2399. [PMID: 39001461 PMCID: PMC11240534 DOI: 10.3390/cancers16132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Although there has been a reduction in head and neck squamous cell carcinoma occurrence, it continues to be a serious global health concern. The lack of precise early diagnostic biomarkers and postponed diagnosis in the later stages are notable constraints that contribute to poor survival rates and emphasize the need for innovative diagnostic methods. In this study, we employed machine learning alongside weighted gene co-expression network analysis (WGCNA) and network biology to investigate the gene expression patterns of blood platelets, identifying transcriptomic markers for HNSCC diagnosis. Our comprehensive examination of publicly available gene expression datasets revealed nine genes with significantly elevated expression in samples from individuals diagnosed with HNSCC. These potential diagnostic markers were further assessed using TCGA and GTEx datasets, demonstrating high accuracy in distinguishing between HNSCC and non-cancerous samples. The findings indicate that these gene signatures could revolutionize early HNSCC identification. Additionally, the study highlights the significance of tumor-educated platelets (TEPs), which carry RNA signatures indicative of tumor-derived material, offering a non-invasive source for early-detection biomarkers. Despite using platelet and tumor samples from different individuals, our results suggest that TEPs reflect the transcriptomic and epigenetic landscape of tumors. Future research should aim to directly correlate tumor and platelet samples from the same patients to further elucidate this relationship. This study underscores the potential of these biomarkers in transforming early diagnosis and personalized treatment strategies for HNSCC, advocating for further research to validate their predictive and therapeutic potential.
Collapse
Affiliation(s)
- Jappreet Singh Gill
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Benu Bansal
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
- Department of Biomedical Engineering, School of Electrical Engineering and Computer Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Rayansh Poojary
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Harpreet Singh
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Fang Huang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Jett Weis
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Kristian Herman
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Brock Schultz
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Emre Coban
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| | - Kai Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramkumar Mathur
- Department of Geriatrics, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (B.B.)
| |
Collapse
|
8
|
Giannoukakos S, D'Ambrosi S, Koppers-Lalic D, Gómez-Martín C, Fernandez A, Hackenberg M. Assessing the complementary information from an increased number of biologically relevant features in liquid biopsy-derived RNA-Seq data. Heliyon 2024; 10:e27360. [PMID: 38515664 PMCID: PMC10955244 DOI: 10.1016/j.heliyon.2024.e27360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024] Open
Abstract
Liquid biopsy-derived RNA sequencing (lbRNA-seq) exhibits significant promise for clinic-oriented cancer diagnostics due to its non-invasiveness and ease of repeatability. Despite substantial advancements, obstacles like technical artefacts and process standardisation impede seamless clinical integration. Alongside addressing technical aspects such as normalising fluctuating low-input material and establishing a standardised clinical workflow, the lack of result validation using independent datasets remains a critical factor contributing to the often low reproducibility of liquid biopsy-detected biomarkers. Considering the outlined drawbacks, our objective was to establish a workflow/methodology characterised by: 1. Harness the rich diversity of biological features accessible through lbRNA-seq data, encompassing a holistic range of molecular and functional attributes. These components are seamlessly integrated via a Machine Learning-based Ensemble Classification framework, enabling a unified and comprehensive analysis of the intricate information encoded within the data. 2. Implementing and rigorously benchmarking intra-sample normalisation methods to heighten their relevance within clinical settings. 3. Thoroughly assessing its efficacy across independent test sets to ascertain its robustness and potential utility. Using ten datasets from several studies comprising three different sources of biological material, we first show that while the best-performing normalisation methods depend strongly on the dataset and coupled Machine Learning method, the rather simple Counts Per Million method is generally very robust, showing comparable performance to cross-sample methods. Subsequently, we demonstrate that the innovative biofeature types introduced in this study, such as the Fraction of Canonical Transcript, harbour complementary information. Consequently, their inclusion consistently enhances prediction power compared to models relying solely on gene expression-based biofeatures. Finally, we demonstrate that the workflow is robust on completely independent datasets, generally from different labs and/or different protocols. Taken together, the workflow presented here outperforms generally employed methods in prediction accuracy and may hold potential for clinical diagnostics application due to its specific design.
Collapse
Affiliation(s)
- Stavros Giannoukakos
- Department of Genetics, Faculty of Science, University of Granada, Granada, 18071, Spain
- Bioinformatics Laboratory, Biomedical Research Centre (CIBM), PTS, Granada, 18100, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
| | - Silvia D'Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, 1081HV, the Netherlands
| | | | - Cristina Gómez-Martín
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, 1081HV, the Netherlands
| | - Alberto Fernandez
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, 18071, Spain
| | - Michael Hackenberg
- Department of Genetics, Faculty of Science, University of Granada, Granada, 18071, Spain
- Bioinformatics Laboratory, Biomedical Research Centre (CIBM), PTS, Granada, 18100, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
| |
Collapse
|