1
|
Azad MAK, Li B, Ye T, Qin B, Zhu Q, Martinez Y, Kong X. Effects of partial replacement of soybean meal with Chlorella vulgaris and lysozyme on diarrheal incidence, plasma biochemical parameters, and immunity of weaned piglets. Front Vet Sci 2025; 11:1505540. [PMID: 39872608 PMCID: PMC11769957 DOI: 10.3389/fvets.2024.1505540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/09/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction The study aimed to investigate the effects of Chlorella vulgaris and lysozyme on growth performance, diarrhea rate, immune function, plasma biochemical parameters, and gut microbiota and metabolites of weaned piglets. Methods Thirty weaned Xiangcun black piglets (BW, 11.47 ± 1.13 kg) were randomly assigned to one of three treatment groups: corn-soybean meal-based basal diet (CON group), soybean meal replaced with 5% C. vulgaris (CHV group), and soybean meal replaced with 5% C. vulgaris and 100 mg/kg lysozyme (LYSO group). Results Growth performance was not affected by C. vulgaris or C. vulgaris with lysozyme supplementation, while soybean meal partially replaced by C. vulgaris without lysozyme reduced the diarrhea rate of weaned piglets. Plasma biochemical analysis showed that plasma albumin, alkaline phosphatase, and high-density lipoprotein-cholesterol (HDL-C) levels in the CHV group and the total cholesterol and HDL-C levels in the LYSO group were higher when compared with the CON group. The LYSO group had increased interleukin (IL)-10 level in the jejunum and IL-1β level in the ileum while having a decreasing IL-6 level in the jejunum of piglets. Additionally, although Firmicutes and Megashaera_A abundances and short-chain fatty acid concentrations (including acetate, propionate, butyrate, and valerate) were reduced in the CHV group, but several beneficial bacteria (such as Actinobacteroita, Faecealibacterium, and Anaerovibrio) abundances were increased in the LYSO group. Discussion In summary, dietary C. vulgaris or C. vulgaris with lysozyme supplementation improved health of piglets in some contexts without affecting growth performance. Therefore, soybean meal replaced by 5% C. vulgaris with or without lysozyme as sustainable feed ingredients in piglet diets could be a viable alternative approach.
Collapse
Affiliation(s)
- Md. Abul Kalam Azad
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Li
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Ting Ye
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Binghua Qin
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yordan Martinez
- Department of Monogastric Animals, Institute of Animal Science, San José de Las Lajas, Mayabeque, Cuba
| | - Xiangfeng Kong
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Ribeiro DM, Coelho D, Costa M, Carvalho DFP, Leclercq CC, Renaut J, Freire JPB, Almeida AM, Mestre Prates JA. Integrated transcriptomics and proteomics analysis reveals muscle metabolism effects of dietary Ulva lactuca and ulvan lyase supplementation in weaned piglets. Sci Rep 2024; 14:4589. [PMID: 38409238 DOI: 10.1038/s41598-024-55462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
Seaweeds, including the green Ulva lactuca, can potentially reduce competition between feed, food, and fuel. They can also contribute to the improved development of weaned piglets. However, their indigestible polysaccharides of the cell wall pose a challenge. This can be addressed through carbohydrase supplementation, such as the recombinant ulvan lyase. The objective of our study was to assess the muscle metabolism of weaned piglets fed with 7% U. lactuca and 0.01% ulvan lyase supplementation, using an integrated transcriptomics (RNA-seq) and proteomics (LC-MS) approach. Feeding piglets with seaweed and enzyme supplementation resulted in reduced macronutrient availability, leading to protein degradation through the proteasome (PSMD2), with resulting amino acids being utilized as an energy source (GOT2, IDH3B). Moreover, mineral element accumulation may have contributed to increased oxidative stress, evident from elevated levels of antioxidant proteins like catalase, as a response to maintaining tissue homeostasis. The upregulation of the gene AQP7, associated with the osmotic stress response, further supports these findings. Consequently, an increase in chaperone activity, including HSP90, was required to repair damaged proteins. Our results suggest that enzymatic supplementation may exacerbate the effects observed from feeding U. lactuca alone, potentially due to side effects of cell wall degradation during digestion.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Diogo Coelho
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mónica Costa
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Céline C Leclercq
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - Jenny Renaut
- Biotechnology Environmental Analysis Platform (BEAP), Environmental Research and Innovation Department (ERIN), LIST- Luxembourg Institute of Science and Technology, 5, Rue Bommel, 4940, Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - André Martinho Almeida
- Associate Laboratory TERRA, LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - José António Mestre Prates
- Faculdade de Medicina Veterinária, CIISA - Centre for Interdisciplinary Research in Animal Health, Universidade de Lisboa, 1300-477, Lisbon, Portugal.
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal.
| |
Collapse
|