1
|
Liawrungrueang W, Cho ST, Cholamjiak W, Sarasombath P, Twinprai N, Twinprai P, Han I. Performance and clinical implications of machine learning models for detecting cervical ossification of the posterior longitudinal ligament: a systematic review. Asian Spine J 2025; 19:148-159. [PMID: 39829182 PMCID: PMC11895113 DOI: 10.31616/asj.2024.0452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a significant spinal condition that can lead to severe neurological deficits. Recent advancements in machine learning (ML) and deep learning (DL) have led to the development of promising tools for the early detection and diagnosis of OPLL. This systematic review evaluated the diagnostic performance of ML and DL models and clinical implications in OPLL detection. A systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. PubMed/Medline and Scopus databases were searched for studies published between January 2000 and September 2024. Eligible studies included those utilizing ML or DL models for OPLL detection using imaging data. All studies were assessed for the risk of bias using appropriate tools. The key performance metrics, including accuracy, sensitivity, specificity, and area under the curve (AUC), were analyzed. Eleven studies, comprising a total of 6,031 patients, were included. The ML and DL models demonstrated high diagnostic performance, with accuracy rates ranging from 69.6% to 98.9% and AUC values up to 0.99. Convolutional neural networks and random forest models were the most used approaches. The overall risk of bias was moderate, and concerns were primarily related to participant selection and missing data. In conclusion, ML and DL models show great potential for accurate detection of OPLL, particularly when integrated with imaging techniques. However, to ensure clinical applicability, further research is warranted to validate these findings in more extensive and diverse populations.
Collapse
Affiliation(s)
| | - Sung Tan Cho
- Department of Orthopaedic Surgery, Seoul Seonam Hospital, Seoul,
Korea
| | | | - Peem Sarasombath
- Department of Orthopaedics, Phramongkutklao Hospital and College of Medicine, Bangkok,
Thailand
| | - Nattaphon Twinprai
- Department of Orthopaedics, Srinagarind Hospital, Khon Kaen University, Khon Kaen,
Thailand
| | - Prin Twinprai
- Department of Radiology, Srinagarind Hospital, Khon Kaen University, Khon Kaen,
Thailand
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam,
Korea
| |
Collapse
|
2
|
Zhu J, Zhao Y, Huang C, Zhou C, Wu S, Chen T, Zhan X. Two-centers machine learning analysis for predicting acid-fast bacilli results in tuberculosis sputum tests. J Clin Tuberc Other Mycobact Dis 2025; 38:100511. [PMID: 39927134 PMCID: PMC11803159 DOI: 10.1016/j.jctube.2025.100511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Background Tuberculosis (TB) is a chronic respiratory infectious disease caused by Mycobacterium tuberculosis, typically diagnosed through sputum smear microscopy for acid-fast bacilli (AFB) to assess the infectivity of TB. Methods This study enrolled 769 patients, including 641 patients from the First Affiliated Hospital of Guangxi Medical University as the training group, and 128 patients from Guangxi Hospital of the First Affiliated Hospital of Sun Yat-sen University as the validation group. Among the training cohort, 107 patients were AFB-positive, and 534 were AFB-negative. In the validation cohort, 24 were AFB-positive, and 104 were AFB-negative. Blood samples were collected and analyzed using machine learning (ML) methods to identify key factors for TB diagnosis. Results Several ML methods were compared, and support vector machine recursive feature elimination (SVM-RFE) was selected to construct a nomogram diagnostic model. The area under the curve (AUC) of the diagnostic model was 0.721 in the training cohort and 0.758 in the validation cohort. The model demonstrated clinical utility when the threshold was between 38% and 94%, with the NONE line above the ALL line in the decision curve analysis. Conclusion We developed a diagnostic model using multiple ML methods to predict AFB results, achieving satisfactory diagnostic performance.
Collapse
Affiliation(s)
- Jichong Zhu
- People’s Hospital of Guilin, Guilin 541002, PR China
- First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Yong Zhao
- Guangxi Hospital, the First Affiliated Hospital of Sun Yat-sen University, Nanning 530021, PR China
| | - Chengqian Huang
- First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Chenxing Zhou
- First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Shaofeng Wu
- First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Tianyou Chen
- First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| | - Xinli Zhan
- First Affiliated Hospital of Guangxi Medical University, Nanning 530021, PR China
| |
Collapse
|
3
|
Kalanjiyam GP, Chandramohan T, Raman M, Kalyanasundaram H. Artificial intelligence: a new cutting-edge tool in spine surgery. Asian Spine J 2024; 18:458-471. [PMID: 38917854 PMCID: PMC11222879 DOI: 10.31616/asj.2023.0382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 06/27/2024] Open
Abstract
The purpose of this narrative review was to comprehensively elaborate the various components of artificial intelligence (AI), their applications in spine surgery, practical concerns, and future directions. Over the years, spine surgery has been continuously transformed in various aspects, including diagnostic strategies, surgical approaches, procedures, and instrumentation, to provide better-quality patient care. Surgeons have also augmented their surgical expertise with rapidly growing technological advancements. AI is an advancing field that has the potential to revolutionize many aspects of spine surgery. We performed a comprehensive narrative review of the various aspects of AI and machine learning in spine surgery. To elaborate on the current role of AI in spine surgery, a review of the literature was performed using PubMed and Google Scholar databases for articles published in English in the last 20 years. The initial search using the keywords "artificial intelligence" AND "spine," "machine learning" AND "spine," and "deep learning" AND "spine" extracted a total of 78, 60, and 37 articles and 11,500, 4,610, and 2,270 articles on PubMed and Google Scholar. After the initial screening and exclusion of unrelated articles, duplicates, and non-English articles, 405 articles were identified. After the second stage of screening, 93 articles were included in the review. Studies have shown that AI can be used to analyze patient data and provide personalized treatment recommendations in spine care. It also provides valuable insights for planning surgeries and assisting with precise surgical maneuvers and decisionmaking during the procedures. As more data become available and with further advancements, AI is likely to improve patient outcomes.
Collapse
Affiliation(s)
- Guna Pratheep Kalanjiyam
- Spine Surgery Unit, Department of Orthopaedics, Meenakshi Mission Hospital and Research Centre, Madurai,
India
| | - Thiyagarajan Chandramohan
- Department of Orthopaedics, Government Stanley Medical College, Chennai,
India
- Department of Emergency Medicine, Government Stanley Medical College, Chennai,
India
| | - Muthu Raman
- Department of Orthopaedics, Tenkasi Government Hospital, Tenkasi,
India
| | | |
Collapse
|
4
|
Huang C, Zhuo J, Liu C, Wu S, Zhu J, Chen T, Zhang B, Feng S, Zhou C, Wang Z, Huang S, Chen L, Xinli Zhan. Development and validation of a diagnostic model to differentiate spinal tuberculosis from pyogenic spondylitis by combining multiple machine learning algorithms. BIOMOLECULES & BIOMEDICINE 2024; 24:401-410. [PMID: 37897663 PMCID: PMC10950342 DOI: 10.17305/bb.2023.9663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 10/30/2023]
Abstract
This study focused on the development and validation of a diagnostic model to differentiate between spinal tuberculosis (STB) and pyogenic spondylitis (PS). We analyzed a total of 387 confirmed cases, out of which 241 were diagnosed with STB and 146 were diagnosed with PS. These cases were randomly divided into a training group (n = 271) and a validation group (n = 116). Within the training group, four machine learning (ML) algorithms (least absolute shrinkage and selection operator [LASSO], logistic regression analysis, random forest, and support vector machine recursive feature elimination [SVM-RFE]) were employed to identify distinctive variables. These specific variables were then utilized to construct a diagnostic model. The model's performance was subsequently assessed using the receiver operating characteristic (ROC) curves and the calibration curves. Finally, internal validation of the model was undertaken in the validation group. Our findings indicate that PS patients had an average platelet-to-neutrophil ratio (PNR) of 277.86, which was significantly higher than the STB patients' average of 69.88. The average age of PS patients was 54.71 years, older than the 48 years recorded for STB patients. Notably, the neutrophil-to-lymphocyte ratio (NLR) was higher in PS patients at 6.15, compared to the 3.46 NLR in STB patients. Additionally, the platelet volume distribution width (PDW) in PS patients was 0.2, compared to 0.15 in STB patients. Conversely, the mean platelet volume (MPV) was lower in PS patients at an average of 4.41, whereas STB patients averaged 8.31. Hemoglobin (HGB) levels were lower in PS patients at an average of 113.31 compared to STB patients' average of 121.64. Furthermore, the average red blood cell (RBC) count was 4.26 in PS patients, which was less than the 4.58 average observed in STB patients. After evaluation, seven key factors were identified using the four ML algorithms, forming the basis of our diagnostic model. The training and validation groups yielded area under the curve (AUC) values of 0.841 and 0.83, respectively. The calibration curves demonstrated a high alignment between the nomogram-predicted values and the actual measurements. The decision curve indicated optimal model performance with a threshold set between 2% and 88%. In conclusion, our model offers healthcare practitioners a reliable tool to efficiently and precisely differentiate between STB and PS, thereby facilitating swift and accurate diagnoses.
Collapse
Affiliation(s)
- Chengqian Huang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jing Zhuo
- Surgical Operation Department, Baise People’s Hospital, Affiliated Southwest Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaofeng Wu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jichong Zhu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bin Zhang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sitan Feng
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenxing Zhou
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zequn Wang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shengsheng Huang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liyi Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|