1
|
Haider M, Jagal J, Ali Alghamdi M, Haider Y, Hassan HAFM, Najm MB, Jayakuma MN, Ezzat H, Greish K. Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer. Int J Pharm 2024; 666:124825. [PMID: 39401579 DOI: 10.1016/j.ijpharm.2024.124825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/20/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) remain a major oncological challenge with significant morbidity and mortality rates. Erlotinib (Er) and Curcumin (Cm) are potential therapeutic agents for HNSCC, yet they are hindered by poor solubility and bioavailability. This study explored the optimization of poly(lactic-co-glycolic acid) nanoparticles co-loaded with Er and Cm (Er/Cm-NP), prepared via a D-optimal response surface design-guided nanoprecipitation process. The optimized formulation, optEr/Cm-NP, was then incorporated into chitosan/β-glycerophosphate hydrogels (optEr/Cm-NP-HG) to create an injectable intratumoral (IT) nanocomposite hydrogel (HG) delivery system. Physicochemical properties of the formulations, including gelation time, injectability, mechanical strength and drug release profiles were assessed alongside hemolytic activity. Compared to optEr/Cm-NP alone, the NP-loaded HG formulation exhibited a more pronounced modulation effect, enabling sustained and controlled drug release. The cytotoxicity of the developed formulations was evaluated using the FaDu HNSCC cancer cell line. Both optEr/Cm-NP and optEr/Cm-NP-HG21 displayed enhanced cytotoxicity compared to free drugs. Confocal laser microscopy and flow cytometry confirmed superior cellular uptake of Er and Cm when delivered via NPs or NP-loaded HG. Furthermore, a significant increase in apoptotic cell death upon treatment with optEr/Cm-NP was observed, highlighting its potential for HNSCC therapy. In vivo studies conducted on a xenograft HNSCC mouse model revealed the significant capacity of the intratumorally-injected optEr/Cm-NP-HG21 formulation to retard the tumor growth. Conclusively, the results presented herein report the successful development of a nanocomposite HG system incorporating NPs co-loaded with Er and Cm that could be efficiently utilized in the treatment of HNSCC.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, 27272 Sharjah, United Arab Emirates; Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates.
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Maha Ali Alghamdi
- Department of Biotechnology, College of Science, Taif University, Taif 21974, Kingdom of Saudi Arabia; Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain
| | - Youssef Haider
- College of Engineering, Boston University, Boston, MA, USA
| | - Hatem A F M Hassan
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Muna B Najm
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Manju N Jayakuma
- Research Institute of Medical & Health Sciences, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - Helal Ezzat
- Research Institute of Sciences and Engineering, University of Sharjah, 27272, Sharjah, United Arab Emirates; Civil Engineering Department, Delta Higher Institute for Engineering and Technology, Mansoura, Egypt
| | - Khaled Greish
- Department of Molecular Medicine, Princess Al-Jawhara Centre for Molecular Medicine, School of Medicine and Medical Sciences Arabian Gulf University, Manama 329, Bahrain.
| |
Collapse
|
2
|
Tang B, Huang R, Ma W. Advances in nanotechnology-based approaches for the treatment of head and neck squamous cell carcinoma. RSC Adv 2024; 14:38668-38688. [PMID: 39654926 PMCID: PMC11626385 DOI: 10.1039/d4ra07193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common types of cancers occurring in the head and neck region, is often associated with high mortality rates due to its invasiveness and morbidity. The mainstream treatment methods in clinical settings, including surgery, chemotherapy, and radiotherapy, may cause poor overall survival rate and prognosis, with issues such as drug resistance, damage to adjacent healthy tissues, and potential recurrences. Other treatment approaches such as immunotherapy, photodynamic therapy (PDT), and photothermal therapy (PPT) also suffer from inefficient tumor targeting and suboptimal therapeutic outcomes. Early detection is vital for HNSCC patients, but it is always limited by insensitivity and confusing clinical manifestations. Hence, it is highly desirable to develop optimized therapeutic and diagnostic strategies. With the boom in nanomaterials, nanotechnology-conducted HNSCC therapy has attracted widespread attention. Nanoparticles (NPs) are distinguished by their unique morphology and superior physicochemical property, and some can exhibit direct antitumor activity, while others serve as promising candidates for drug delivery. In addition, NPs offer the potential for structural modification for drug delivery and tumor targeting, enabling specific delivery to tumor cells through conjugation with biomarker ligands and improving cargo biocompatibility. This work reviews current therapies and diagnosis methods for HNSCC, highlights the characteristics of the major NPs, surveys their uses and advantages in the treatment of HNSCC, and discusses the obstacles and prospects in clinical applications, aiming to enlighten future research directions for nanotechnology-based therapy for HNSCC.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Rui Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
3
|
Jagadeesan D, Sathasivam KV, Fuloria NK, Balakrishnan V, Khor GH, Ravichandran M, Solyappan M, Fuloria S, Gupta G, Ahlawat A, Yadav G, Kaur P, Husseen B. Comprehensive insights into oral squamous cell carcinoma: Diagnosis, pathogenesis, and therapeutic advances. Pathol Res Pract 2024; 261:155489. [PMID: 39111016 DOI: 10.1016/j.prp.2024.155489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is considered the most common type of head and neck squamous cell carcinoma (HNSCC) as it holds 90 % of HNSCC cases that arise from multiple locations in the oral cavity. The last three decades witnessed little progress in the diagnosis and treatment of OSCC the aggressive tumor. However, in-depth knowledge about OSCC's pathogenesis, staging & grading, hallmarks, and causative factors is a prime requirement in advanced diagnosis and treatment for OSCC patients. Therefore present review was intended to comprehend the OSCCs' prevalence, staging & grading, molecular pathogenesis including premalignant stages, various hallmarks, etiology, diagnostic methods, treatment (including FDA-approved drugs with the mechanism of action and side effects), and theranostic agents. The current review updates that for a better understanding of OSCC progress tumor-promoting inflammation, sustained proliferative signaling, and growth-suppressive signals/apoptosis capacity evasion are the three most important hallmarks to be considered. This review suggests that among all the etiology factors the consumption of tobacco is the major contributor to the high incidence rate of OSCC. In OSCC diagnosis biopsy is considered the gold standard, however, toluidine blue staining is the easiest and non-invasive method with high accuracy. Although there are various therapeutic agents available for cancer treatment, however, a few only are approved by the FDA specifically for OSCC treatment. The present review recommends that among all available OSCC treatments, the antibody-based CAR-NK is a promising therapeutic approach for future cancer treatment. Presently review also suggests that theranostics have boosted the advancement of cancer diagnosis and treatment, however, additional work is required to refine the role of theranostics in combination with different modalities in cancer treatment.
Collapse
Affiliation(s)
- Dharshini Jagadeesan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Kathiresan V Sathasivam
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia,11800 USM, Pulau Pinang, Malaysia
| | - Goot Heah Khor
- Centre of Preclinical Science Studies, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, SungaiBuloh, Selangor 47000, Malaysia; Oral and Maxillofacial Cancer Research Group, Faculty of Dentistry, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | - Maheswaran Solyappan
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Abhilasha Ahlawat
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Geeta Yadav
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - Pandeep Kaur
- National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| |
Collapse
|
4
|
Edo GI, Yousif E, Al-Mashhadani MH. Chitosan: An overview of biological activities, derivatives, properties, and current advancements in biomedical applications. Carbohydr Res 2024; 542:109199. [PMID: 38944980 DOI: 10.1016/j.carres.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The second and most often utilized natural polymer is chitosan (CS), a naturally existing amino polysaccharide that is produced by deacetylating chitin. Numerous applications have been the subject of in-depth investigation due to its non-hazardous, biologically compatible, and biodegradable qualities. Chitosan's characteristics, such as mucoadhesion, improved permeability, controlled release of drugs, in situ gelation process, and antibacterial activity, depend on its amino (-NH2) and hydroxyl groups (-OH). This study examines the latest findings in chitosan research, including its characteristics, derivatives, preliminary research, toxic effects, pharmaceutical kinetics and chitosan nanoparticles (CS-NPs) based for non-parenteral delivery of drugs. Chitosan and its derivatives have a wide range of physical and chemical properties that make them highly promising for use in the medicinal and pharmaceutical industries. The characteristics and biological activities of chitosan and its derivative-based nanomaterials for the delivery of drugs, therapeutic gene transfer, delivery of vaccine, engineering tissues, evaluations, and other applications in medicine are highlighted in detail in the current review. Together with the techniques for binding medications to nanoparticles, the application of the nanoparticles was also dictated by their physical properties that were classified and specified. The most recent research investigations on delivery of drugs chitosan nanoparticle-based medication delivery methods applied topically, through the skin, and through the eyes were considered.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- College of Science, Department of Chemistry, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- College of Science, Department of Chemistry, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
5
|
Kattimani V, Bhukya NKN, Panga GSK, Chakrabarty A, Lingamaneni P. Nano-Drug Carriers for Targeted Therapeutic Approaches in Oral Cancer: A Systematic Review. J Maxillofac Oral Surg 2024; 23:763-771. [PMID: 39118900 PMCID: PMC11303611 DOI: 10.1007/s12663-024-02251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Nanotechnology has shown potential in treating different types of cancers. In particular, nano-drug delivery systems (DDSs) offer a promising strategy for treating oral cancer. By customizing therapy and improving drug delivery, these systems can improve outcomes for patients. Hence, a review was conducted to assess the current evidence and explore the use of DDSs for treating oral cancer. Aim To comprehensively explore the nano-drug carriers and target delivery for oral cancer therapy and to discuss the benefits, challenges, and potential to guide future research and clinical practice. Methodology A systematic search of articles archived in PubMed, Scopus, and Cochrane using keywords such as Nano, drug carrier, target drug delivery, and oral cancer was performed to fulfill the objectives from inception till February 2, 2024. Articles providing insights into nano-drug carriers in oral cancer were included. Results The results revealed a total of 156 articles. After duplicate removal, 136 articles were screened for title and abstract as per the inclusion and exclusion criteria. A total of 113 articles were excluded with reasons. Out of the remaining 23 articles, only 11 were included for qualitative data synthesis. Conclusion The literature revealed scarcity of oral cancer-related work using DDSs. Qualitative synthesis of data revealed that nano-drug carriers demonstrated a promising avenue for targeted therapeutic approaches in oral cancer, despite the challenges and their potential benefits. Continued research and development in this field are crucial to overcoming these challenges and fully realizing the potential of nano-drug carriers in revolutionizing oral cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s12663-024-02251-z.
Collapse
Affiliation(s)
- Vivekanand Kattimani
- SIBAR Institute of Dental Sciences, Takkellapadu, Guntur, Andhra Pradesh 522509 India
| | - Nom Kumar Naik Bhukya
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | | | | | | |
Collapse
|
6
|
Manikkath J, Manikkath A, Lad H, Vora LK, Mudgal J, Shenoy RR, Ashili S, Radhakrishnan R. Nanoparticle-mediated active and passive drug targeting in oral squamous cell carcinoma: current trends and advances. Nanomedicine (Lond) 2023; 18:2061-2080. [PMID: 38197397 DOI: 10.2217/nnm-2023-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is an invasive and highly malignant cancer with significant morbidity and mortality. Existing treatments including surgery, chemotherapy and radiation have poor overall survival rates and prognosis. The intended therapeutic effects of chemotherapy are limited by drug resistance, systemic toxicity and adverse effects. This review explores advances in OSCC treatment, with a focus on lipid-based platforms (solid lipid nanoparticles, nanostructured lipid carriers, lipid-polymer hybrids, cubosomes), polymeric nanoparticles, self-assembling nucleoside nanoparticles, dendrimers, magnetic nanovectors, graphene oxide nanostructures, stimuli-responsive nanoparticles, gene therapy, folic acid receptor targeting, gastrin-releasing peptide receptor targeting, fibroblast activation protein targeting, urokinase-type plasminogen activator receptor targeting, biotin receptor targeting and transferrin receptor targeting. This review also highlights oncolytic viruses as OSCC therapy candidates.
Collapse
Affiliation(s)
- Jyothsna Manikkath
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka State, 576104, India
| | - Aparna Manikkath
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - Hitesh Lad
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Karnataka State, 576104, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
| | | | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State, 576104, India
- Academic Unit of Oral & Maxillofacial Medicine & Pathology, School of Clinical Dentistry, University of Sheffield, S10 2TA, UK
| |
Collapse
|