1
|
Ma J, Chen Y, Wen Q. Research on the impact of polydopamine hydrogel electrodes with various doping methods on the performance of microbial fuel cells. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03154-0. [PMID: 40252082 DOI: 10.1007/s00449-025-03154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/17/2025] [Indexed: 04/21/2025]
Abstract
Microbial fuel cells (MFCs) have attracted considerable interest as a promising bioelectrochemical technology for directly converting chemical energy into electrical energy. However, their performance remains limited by the properties of anode materials and their interactions with microbial communities. In this study, PPy-MXene/PDA and PDA-PPy-MXene composite hydrogel electrodes (PMP and PPM) were fabricated on a conductive carbon felt substrate to systematically evaluate the influence of different PDA doping strategies on electrode performance. The PMP electrode exhibited a maximum power density of 3.62 W/m2, which represented a 34.6% increase compared to the PPM electrode (2.69 W/m2). Moreover, the protein content on the PMP electrode reached 38.05 ± 4.88 mg/cm2, 3.79 times higher than that on the PPM electrode (10.05 ± 3.05 mg/cm2). High-throughput sequencing of the 16S rRNA gene revealed that the relative abundance of Geobacter on the PMP electrode surface reached 73.66%, significantly higher than the 51.17% observed on the PPM electrode. These results are attributed to the PDA doping method involving secondary deposition on the electrode surface. This method optimizes the electron transfer pathways and significantly enhances the electrode's conductivity and electrochemical activity by altering the surface roughness of the electrode and increasing the content of hydrophilic functional groups. Consequently, it significantly promotes the enrichment of electroactive microorganisms and improves the efficiency of extracellular electron transfer. This study optimized PDA doping strategies to significantly enhance the electrochemical performance of MFCs, providing new insights and approaches for the rational design of high-performance bioelectrochemical electrodes.
Collapse
Affiliation(s)
- Jinhu Ma
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Ye Chen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, People's Republic of China.
| | - Qing Wen
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Keneshbekova A, Smagulova G, Kaidar B, Imash A, Ilyanov A, Kazhdanbekov R, Yensep E, Lesbayev A. MXene/Carbon Nanocomposites for Water Treatment. MEMBRANES 2024; 14:184. [PMID: 39330525 PMCID: PMC11434601 DOI: 10.3390/membranes14090184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
One of the most critical problems faced by modern civilization is the depletion of freshwater resources due to their continuous consumption and contamination with different organic and inorganic pollutants. This paper considers the potential of already discovered MXenes in combination with carbon nanomaterials to address this problem. MXene appears to be a highly promising candidate for water purification due to its large surface area and electrochemical activity. However, the problems of swelling, stability, high cost, and scalability need to be overcome. The synthesis methods for MXene and its composites with graphene oxide, carbon nanotubes, carbon nanofibers, and cellulose nanofibers, along with their structure, properties, and mechanisms for removing various pollutants from water, are described. This review discusses the synthesis methods, properties, and mechanisms of water purification using MXene and its composites. It also explores the fundamental aspects of MXene/carbon nanocomposites in various forms, such as membranes, aerogels, and textiles. A comparative analysis of the latest research on this topic shows the progress in this field and the limitations for the practical application of MXene/carbon nanocomposites to solve the problem of drinking water scarcity. Consequently, this review demonstrates the relevance and promise of the material and underscores the importance of further research and development of MXene/carbon nanocomposites to provide effective water treatment solutions.
Collapse
Affiliation(s)
- Aruzhan Keneshbekova
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
| | - Gaukhar Smagulova
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Bayan Kaidar
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| | - Aigerim Imash
- Institute of Combustion Problems, 172 Bogenbay Batyr Str., Almaty 050012, Kazakhstan
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Akram Ilyanov
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Ramazan Kazhdanbekov
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Eleonora Yensep
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
- Faculty of Chemistry and Chemical Technology, Al Farabi Kazakh National University, 71 al-Farabi Ave., Almaty 050040, Kazakhstan
| | - Aidos Lesbayev
- Department of "General Physics", Intistute of Energy and Mechanical Engineering Named after A. Burkitbayev, Satbayev University, 22a Satpaev Str., Almaty 050013, Kazakhstan
| |
Collapse
|
3
|
El-Khatib AM, Bondouk II, Omar KM, Hamdy A, Abbas MI, El-Khatib M, Hammoury SI, Gouda MM. Impact of (nano ZnO/multi-wall CNTs) prepared by arc discharge method on the removal efficiency of stable iodine 127I and radioactive iodine 131I from water. Sci Rep 2024; 14:4242. [PMID: 38378858 PMCID: PMC10879082 DOI: 10.1038/s41598-024-54604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
Radioactive iodine isotopes especially 131I are used for diagnosis and treatment of different types of cancer diseases. Due to the leak of radioactive iodine into the patient's urine in turn, the wastewater would be contaminated, so it is worth preparing a novel adsorption green material to remove the radioactive iodine from wastewater efficiently. The removal of 127I and 131I contaminants from aqueous solution is a problem of interest. Therefore, this work presents a new study for removing the stable iodine 127I- and radioactive iodine 131I from aqueous solutions by using the novel nano adsorbent (Nano ZnO/MWCNTs) which is synthesized by the arc discharge method. It is an economic method for treating contaminated water from undesired dissolved iodine isotopes. The optimal conditions for maximum removal are (5 mg/100 ml) as optimum dose with shacking (200 rpm) for contact time of (60 min), at (25 °C) in an acidic medium of (pH = 5). After the adsorption process, the solution is filtrated and the residual iodide (127I-) is measured at a maximum UV wavelength absorbance of 225 nm. The maximum adsorption capacity is (15.25 mg/g); therefore the prepared nano adsorbent (Nano ZnO/MWCNTs) is suitable for treating polluted water from low iodide concentrations. The adsorption mechanism of 127I- on to the surface of (Nano ZnO/MWCNTs) is multilayer physical adsorption according to Freundlich isotherm model and obeys the Pseudo-first order kinetic model. According to Temkin isotherm model the adsorption is exothermic. The removal efficiency of Nano ZnO/MWCNTs for stable iodine (127I-) from aqueous solutions has reached 97.23%, 89.75%, and 64.78% in case of initial concentrations; 0.1843 ppm, 0.5014 ppm and 1.0331 ppm, respectively. For the prepared radio iodine (131I-) solution of radioactivity (20 µCi), the dose of nano adsorbent was (10 mg/100 ml) and the contact time was (60 min) at (pH = 5) with shacking (200 rpm) at (25 °C). The filtration process was done by using a syringe filter of a pore size (450 nm) after 2 days to equilibrate. The removal efficiency reached (34.16%) after the first cycle of treatment and the percentage of residual radio iodine was (65.86%). The removal efficiency reached (94.76%) after five cycles of treatment and the percentage of residual radio iodine was (5.24%). This last percentage was less than (42.15%) which produces due to the natural decay during 10 days.
Collapse
Affiliation(s)
- Ahmed M El-Khatib
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - I I Bondouk
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Kh M Omar
- Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Ahmed Hamdy
- Obtained Philosophy Doctoral Degree in Nuclear Physics, Physics Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mahmoud I Abbas
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - M El-Khatib
- Basic Sciences Department, Faculty of Engineering, Pharos University, Alexandria, Egypt
| | - Sabbah I Hammoury
- Head of Medical Physics and Radiotherapy Department, Alexandria Ayadi Almostakbal Oncology Hospital, Alexandria, Egypt
| | - Mona M Gouda
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt.
| |
Collapse
|