1
|
Foos N, Florial JB, Eymery M, Sinoir J, Felisaz F, Oscarsson M, Beteva A, Bowler MW, Nurizzo D, Papp G, Soler-Lopez M, Nanao M, Basu S, McCarthy AA. In situ serial crystallography facilitates 96-well plate structural analysis at low symmetry. IUCRJ 2024; 11:780-791. [PMID: 39008358 PMCID: PMC11364034 DOI: 10.1107/s2052252524005785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The advent of serial crystallography has rejuvenated and popularized room-temperature X-ray crystal structure determination. Structures determined at physiological temperature reveal protein flexibility and dynamics. In addition, challenging samples (e.g. large complexes, membrane proteins and viruses) form fragile crystals that are often difficult to harvest for cryo-crystallography. Moreover, a typical serial crystallography experiment requires a large number of microcrystals, mainly achievable through batch crystallization. Many medically relevant samples are expressed in mammalian cell lines, producing a meager quantity of protein that is incompatible with batch crystallization. This can limit the scope of serial crystallography approaches. Direct in situ data collection from a 96-well crystallization plate enables not only the identification of the best diffracting crystallization condition but also the possibility for structure determination under ambient conditions. Here, we describe an in situ serial crystallography (iSX) approach, facilitating direct measurement from crystallization plates mounted on a rapidly exchangeable universal plate holder deployed at a microfocus beamline, ID23-2, at the European Synchrotron Radiation Facility. We applied our iSX approach on a challenging project, autotaxin, a therapeutic target expressed in a stable human cell line, to determine the structure in the lowest-symmetry P1 space group at 3.0 Å resolution. Our in situ data collection strategy provided a complete dataset for structure determination while screening various crystallization conditions. Our data analysis reveals that the iSX approach is highly efficient at a microfocus beamline, improving throughput and demonstrating how crystallization plates can be routinely used as an alternative method of presenting samples for serial crystallography experiments at synchrotrons.
Collapse
Affiliation(s)
- Nicolas Foos
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Jean-Baptise Florial
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Mathias Eymery
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Jeremy Sinoir
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Franck Felisaz
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Marcus Oscarsson
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Antonia Beteva
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Matthew W. Bowler
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Didier Nurizzo
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Gergely Papp
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | | | - Max Nanao
- European Synchrotron Radiation Facility71 Avenue des Martyrs38042GrenobleFrance
| | - Shibom Basu
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| | - Andrew A. McCarthy
- European Molecular Biology LaboratoryGrenoble Outstation, 71 Avenue des Martyrs38042GrenobleFrance
| |
Collapse
|
2
|
Fu X, Geng Z, Jiao Z, Ding W. A modified phase-retrieval algorithm to facilitate automatic de novo macromolecular structure determination in single-wavelength anomalous diffraction. IUCRJ 2024; 11:587-601. [PMID: 38904547 PMCID: PMC11220887 DOI: 10.1107/s2052252524004846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
The success of experimental phasing in macromolecular crystallography relies primarily on the accurate locations of heavy atoms bound to the target crystal. To improve the process of substructure determination, a modified phase-retrieval algorithm built on the framework of the relaxed alternating averaged reflection (RAAR) algorithm has been developed. Importantly, the proposed algorithm features a combination of the π-half phase perturbation for weak reflections and enforces the direct-method-based tangent formula for strong reflections in reciprocal space. The proposed algorithm is extensively demonstrated on a total of 100 single-wavelength anomalous diffraction (SAD) experimental datasets, comprising both protein and nucleic acid structures of different qualities. Compared with the standard RAAR algorithm, the modified phase-retrieval algorithm exhibits significantly improved effectiveness and accuracy in SAD substructure determination, highlighting the importance of additional constraints for algorithmic performance. Furthermore, the proposed algorithm can be performed without human intervention under most conditions owing to the self-adaptive property of the input parameters, thus making it convenient to be integrated into the structural determination pipeline. In conjunction with the IPCAS software suite, we demonstrated experimentally that automatic de novo structure determination is possible on the basis of our proposed algorithm.
Collapse
Affiliation(s)
- Xingke Fu
- Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zhi Geng
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zhichao Jiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Wei Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijing100190People’s Republic of China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049People’s Republic of China
- Songshan Lake Materials Laboratory, Dongguan523808, People’s Republic of China
| |
Collapse
|
3
|
Sinclair M, Stein RA, Sheehan JH, Hawes EM, O’Brien RM, Tajkhorshid E, Claxton DP. Integrative analysis of pathogenic variants in glucose-6-phosphatase based on an AlphaFold2 model. PNAS NEXUS 2024; 3:pgae036. [PMID: 38328777 PMCID: PMC10849595 DOI: 10.1093/pnasnexus/pgae036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/09/2024] [Indexed: 02/09/2024]
Abstract
Mediating the terminal reaction of gluconeogenesis and glycogenolysis, the integral membrane protein glucose-6-phosphate catalytic subunit 1 (G6PC1) regulates hepatic glucose production by catalyzing hydrolysis of glucose-6-phosphate (G6P) within the lumen of the endoplasmic reticulum. Consistent with its vital contribution to glucose homeostasis, inactivating mutations in G6PC1 causes glycogen storage disease (GSD) type 1a characterized by hepatomegaly and severe hypoglycemia. Despite its physiological importance, the structural basis of G6P binding to G6PC1 and the molecular disruptions induced by missense mutations within the active site that give rise to GSD type 1a are unknown. In this study, we determine the atomic interactions governing G6P binding as well as explore the perturbations imposed by disease-linked missense variants by subjecting an AlphaFold2 G6PC1 structural model to molecular dynamics simulations and in silico predictions of thermodynamic stability validated with robust in vitro and in situ biochemical assays. We identify a collection of side chains, including conserved residues from the signature phosphatidic acid phosphatase motif, that contribute to a hydrogen bonding and van der Waals network stabilizing G6P in the active site. The introduction of GSD type 1a mutations modified the thermodynamic landscape, altered side chain packing and substrate-binding interactions, and induced trapping of catalytic intermediates. Our results, which corroborate the high quality of the AF2 model as a guide for experimental design and to interpret outcomes, not only confirm the active-site structural organization but also identify previously unobserved mechanistic contributions of catalytic and noncatalytic side chains.
Collapse
Affiliation(s)
- Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN 37240, USA
| | - Jonathan H Sheehan
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Emily M Hawes
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Richard M O’Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Derek P Claxton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN 37240, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
4
|
Sinclair M, Stein RA, Sheehan JH, Hawes EM, O'Brien RM, Tajkhorshid E, Claxton DP. Molecular mechanisms of catalytic inhibition for active site mutations in glucose-6-phosphatase catalytic subunit 1 linked to glycogen storage disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532485. [PMID: 36993754 PMCID: PMC10054992 DOI: 10.1101/2023.03.13.532485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mediating the terminal reaction of gluconeogenesis and glycogenolysis, the integral membrane protein G6PC1 regulates hepatic glucose production by catalyzing hydrolysis of glucose-6-phosphate (G6P) within the lumen of the endoplasmic reticulum. Consistent with its vital contribution to glucose homeostasis, inactivating mutations in G6PC1 cause glycogen storage disease (GSD) type 1a characterized by hepatomegaly and severe hypoglycemia. Despite its physiological importance, the structural basis of G6P binding to G6PC1 and the molecular disruptions induced by missense mutations within the active site that give rise to GSD type 1a are unknown. Exploiting a computational model of G6PC1 derived from the groundbreaking structure prediction algorithm AlphaFold2 (AF2), we combine molecular dynamics (MD) simulations and computational predictions of thermodynamic stability with a robust in vitro screening platform to define the atomic interactions governing G6P binding as well as explore the energetic perturbations imposed by disease-linked variants. We identify a collection of side chains, including conserved residues from the signature phosphatidic acid phosphatase motif, that contribute to a hydrogen bonding and van der Waals network stabilizing G6P in the active site. Introduction of GSD type 1a mutations into the G6PC1 sequence elicits changes in G6P binding energy, thermostability and structural properties, suggesting multiple pathways of catalytic impairment. Our results, which corroborate the high quality of the AF2 model as a guide for experimental design and to interpret outcomes, not only confirm active site structural organization but also suggest novel mechanistic contributions of catalytic and non-catalytic side chains.
Collapse
|
5
|
Zhao FZ, Wang ZJ, Xiao QJ, Yu L, Sun B, Hou Q, Chen LL, Liang H, Wu H, Guo WH, He JH, Wang QS, Yin DC. Microfluidic rotating-target device capable of three-degrees-of-freedom motion for efficient in situ serial synchrotron crystallography. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:347-358. [PMID: 36891848 PMCID: PMC10000801 DOI: 10.1107/s1600577523000462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
There is an increasing demand for simple and efficient sample delivery technology to match the rapid development of serial crystallography and its wide application in analyzing the structural dynamics of biological macromolecules. Here, a microfluidic rotating-target device is presented, capable of three-degrees-of-freedom motion, including two rotational degrees of freedom and one translational degree of freedom, for sample delivery. Lysozyme crystals were used as a test model with this device to collect serial synchrotron crystallography data and the device was found to be convenient and useful. This device enables in situ diffraction from crystals in a microfluidic channel without the need for crystal harvesting. The circular motion ensures that the delivery speed can be adjusted over a wide range, showing its good compatibility with different light sources. Moreover, the three-degrees-of-freedom motion guarantees the full utilization of crystals. Hence, sample consumption is greatly reduced, and only 0.1 mg of protein is consumed in collecting a complete dataset.
Collapse
Affiliation(s)
- Feng-Zhu Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
- School of NCO, Army Medical University, Shijiazhuang 050081, People’s Republic of China
| | - Zhi-Jun Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Qing-Jie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Li Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Qian Hou
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Liang-Liang Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Huan Liang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Hai Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Wei-Hong Guo
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Jian-Hua He
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Qi-Sheng Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Da-Chuan Yin
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| |
Collapse
|
6
|
Karasawa A, Andi B, Fuchs MR, Shi W, McSweeney S, Hendrickson WA, Liu Q. Multi-crystal native-SAD phasing at 5 keV with a helium environment. IUCRJ 2022; 9:768-777. [PMID: 36381147 PMCID: PMC9634608 DOI: 10.1107/s205225252200971x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
De novo structure determination from single-wavelength anomalous diffraction using native sulfur or phospho-rus in biomolecules (native-SAD) is an appealing method to mitigate the labor-intensive production of heavy-atom derivatives and seleno-methio-nyl substitutions. The native-SAD method is particularly attractive for membrane proteins, which are difficult to produce and often recalcitrant to grow into decent-sized crystals. Native-SAD uses lower-energy X-rays to enhance anomalous signals from sulfur or phospho-rus. However, at lower energies, the scattering and absorption of air contribute to the background noise, reduce the signals and are thus adverse to native-SAD phasing. We have previously demonstrated native-SAD phasing at an energy of 5 keV in air at the NSLS-II FMX beamline. Here, the use of a helium path developed to reduce both the noise from background scattering and the air absorption of the diffracted X-ray beam are described. The helium path was used for collection of anomalous diffraction data at 5 keV for two proteins: thaumatin and the membrane protein TehA. Although anomalous signals from each individual crystal are very weak, robust anomalous signals are obtained from data assembled from micrometre-sized crystals. The thaumatin structure was determined from 15 microcrystals and the TehA structure from 18 microcrystals. These results demonstrate the usefulness of a helium environment in support of native-SAD phasing at 5 keV.
Collapse
Affiliation(s)
- Akira Karasawa
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY 10027, USA
| | - Babak Andi
- Photon Sciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Sciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wuxian Shi
- Photon Sciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Sean McSweeney
- Photon Sciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wayne A. Hendrickson
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Qun Liu
- Photon Sciences, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
7
|
Healey RD, Basu S, Humm AS, Leyrat C, Cong X, Golebiowski J, Dupeux F, Pica A, Granier S, Márquez JA. An automated platform for structural analysis of membrane proteins through serial crystallography. CELL REPORTS METHODS 2021; 1:None. [PMID: 34723237 PMCID: PMC8545655 DOI: 10.1016/j.crmeth.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 09/22/2021] [Indexed: 11/01/2022]
Abstract
Membrane proteins are central to many pathophysiological processes, yet remain very difficult to analyze structurally. Moreover, high-throughput structure-based drug discovery has not yet been exploited for membrane proteins because of lack of automation. Here, we present a facile and versatile platform for in meso membrane protein crystallization, enabling rapid atomic structure determination at both cryogenic and room temperatures. We apply this approach to human integral membrane proteins, which allowed us to identify different conformational states of intramembrane enzyme-product complexes and analyze by molecular dynamics simulations the structural dynamics of the ADIPOR2 integral membrane protein. Finally, we demonstrate an automated pipeline combining high-throughput microcrystal soaking, automated laser-based harvesting, and serial crystallography, enabling screening of small-molecule libraries with membrane protein crystals grown in meso. This approach brings needed automation to this important class of drug targets and enables high-throughput structure-based ligand discovery with membrane proteins.
Collapse
Affiliation(s)
- Robert D. Healey
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Shibom Basu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Anne-Sophie Humm
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Cedric Leyrat
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Xiaojing Cong
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jérôme Golebiowski
- Institute of Chemistry of Nice UMR7272, Université Côte d’Azur, CNRS, 28 Avenue Valrose, 06108 Nice, France
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Technology, 711-873 Daegu, South Korea
| | - Florine Dupeux
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- Institut de Biologie Structurale, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Andrea Pica
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- ALPX S.A.S. 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Sébastien Granier
- IGF, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - José Antonio Márquez
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, 38000 Grenoble, France
- ALPX S.A.S. 71 Avenue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
8
|
Martiel I, Beale JH, Karpik A, Huang CY, Vera L, Olieric N, Wranik M, Tsai CJ, Mühle J, Aurelius O, John J, Högbom M, Wang M, Marsh M, Padeste C. Versatile microporous polymer-based supports for serial macromolecular crystallography. Acta Crystallogr D Struct Biol 2021; 77:1153-1167. [PMID: 34473086 PMCID: PMC8411977 DOI: 10.1107/s2059798321007324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
Serial data collection has emerged as a major tool for data collection at state-of-the-art light sources, such as microfocus beamlines at synchrotrons and X-ray free-electron lasers. Challenging targets, characterized by small crystal sizes, weak diffraction and stringent dose limits, benefit most from these methods. Here, the use of a thin support made of a polymer-based membrane for performing serial data collection or screening experiments is demonstrated. It is shown that these supports are suitable for a wide range of protein crystals suspended in liquids. The supports have also proved to be applicable to challenging cases such as membrane proteins growing in the sponge phase. The sample-deposition method is simple and robust, as well as flexible and adaptable to a variety of cases. It results in an optimally thin specimen providing low background while maintaining minute amounts of mother liquor around the crystals. The 2 × 2 mm area enables the deposition of up to several microlitres of liquid. Imaging and visualization of the crystals are straightforward on the highly transparent membrane. Thanks to their affordable fabrication, these supports have the potential to become an attractive option for serial experiments at synchrotrons and free-electron lasers.
Collapse
Affiliation(s)
- Isabelle Martiel
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - John H. Beale
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Agnieszka Karpik
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
- Institute of Polymer Nanotechnology (INKA), FHNW University of Applied Sciences and Arts Northwestern Switzerland, 5210 Windisch, Switzerland
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Laura Vera
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Natacha Olieric
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Maximilian Wranik
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Ching-Ju Tsai
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Jonas Mühle
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Oskar Aurelius
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
- MAX IV Laboratory, Lund University, Fotongatan 2, 224 84 Lund, Sweden
| | - Juliane John
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - May Marsh
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Celestino Padeste
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| |
Collapse
|
9
|
Olatunji S, Bowen K, Huang CY, Weichert D, Singh W, Tikhonova IG, Scanlan EM, Olieric V, Caffrey M. Structural basis of the membrane intramolecular transacylase reaction responsible for lyso-form lipoprotein synthesis. Nat Commun 2021; 12:4254. [PMID: 34253723 PMCID: PMC8275575 DOI: 10.1038/s41467-021-24475-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/08/2021] [Indexed: 11/08/2022] Open
Abstract
Lipoproteins serve diverse functions in the bacterial cell and some are essential for survival. Some lipoproteins are adjuvants eliciting responses from the innate immune system of the host. The growing list of membrane enzymes responsible for lipoprotein synthesis includes the recently discovered lipoprotein intramolecular transacylase, Lit. Lit creates a lipoprotein that is less immunogenic, possibly enabling the bacteria to gain a foothold in the host by stealth. Here, we report the crystal structure of the Lit enzyme from Bacillus cereus and describe its mechanism of action. Lit consists of four transmembrane helices with an extracellular cap. Conserved residues map to the cap-membrane interface. They include two catalytic histidines that function to effect unimolecular transacylation. The reaction involves acyl transfer from the sn-2 position of the glyceryl moiety to the amino group on the N-terminal cysteine of the substrate via an 8-membered ring intermediate. Transacylation takes place in a confined aromatic residue-rich environment that likely evolved to bring distant moieties on the substrate into proximity and proper orientation for catalysis.
Collapse
Affiliation(s)
- Samir Olatunji
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Katherine Bowen
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Dietmar Weichert
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Warispreet Singh
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Hub for Biotechnology in Build Environment, Newcastle upon Tyne, United Kingdom
| | - Irina G Tikhonova
- School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Eoin M Scanlan
- School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
10
|
Li H, Huang CY, Govorunova EG, Sineshchekov OA, Yi A, Rothschild KJ, Wang M, Zheng L, Spudich JL. The crystal structure of bromide-bound GtACR1 reveals a pre-activated state in the transmembrane anion tunnel. eLife 2021; 10:65903. [PMID: 33998458 PMCID: PMC8172240 DOI: 10.7554/elife.65903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/16/2021] [Indexed: 12/16/2022] Open
Abstract
The crystal structure of the light-gated anion channel GtACR1 reported in our previous Research Article (Li et al., 2019) revealed a continuous tunnel traversing the protein from extracellular to intracellular pores. We proposed the tunnel as the conductance channel closed by three constrictions: C1 in the extracellular half, mid-membrane C2 containing the photoactive site, and C3 on the cytoplasmic side. Reported here, the crystal structure of bromide-bound GtACR1 reveals structural changes that relax the C1 and C3 constrictions, including a novel salt-bridge switch mechanism involving C1 and the photoactive site. These findings indicate that substrate binding induces a transition from an inactivated state to a pre-activated state in the dark that facilitates channel opening by reducing free energy in the tunnel constrictions. The results provide direct evidence that the tunnel is the closed form of the channel of GtACR1 and shed light on the light-gated channel activation mechanism.
Collapse
Affiliation(s)
- Hai Li
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Elena G Govorunova
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Oleg A Sineshchekov
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - Adrian Yi
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, United States
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, United States
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland
| | - Lei Zheng
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| | - John L Spudich
- Department of Biochemistry and Molecular Biology, Center for Membrane Biology, University of Texas Health Science Center - McGovern Medical School, Houston, United States
| |
Collapse
|
11
|
Kermani AA. A guide to membrane protein X‐ray crystallography. FEBS J 2020; 288:5788-5804. [DOI: 10.1111/febs.15676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/17/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Ali A. Kermani
- Department of Molecular, Cellular, and Developmental Biology University of Michigan Ann Arbor MI USA
| |
Collapse
|
12
|
Birch J, Cheruvara H, Gamage N, Harrison PJ, Lithgo R, Quigley A. Changes in Membrane Protein Structural Biology. BIOLOGY 2020; 9:E401. [PMID: 33207666 PMCID: PMC7696871 DOI: 10.3390/biology9110401] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Membrane proteins are essential components of many biochemical processes and are important pharmaceutical targets. Membrane protein structural biology provides the molecular rationale for these biochemical process as well as being a highly useful tool for drug discovery. Unfortunately, membrane protein structural biology is a difficult area of study due to low protein yields and high levels of instability especially when membrane proteins are removed from their native environments. Despite this instability, membrane protein structural biology has made great leaps over the last fifteen years. Today, the landscape is almost unrecognisable. The numbers of available atomic resolution structures have increased 10-fold though advances in crystallography and more recently by cryo-electron microscopy. These advances in structural biology were achieved through the efforts of many researchers around the world as well as initiatives such as the Membrane Protein Laboratory (MPL) at Diamond Light Source. The MPL has helped, provided access to and contributed to advances in protein production, sample preparation and data collection. Together, these advances have enabled higher resolution structures, from less material, at a greater rate, from a more diverse range of membrane protein targets. Despite this success, significant challenges remain. Here, we review the progress made and highlight current and future challenges that will be overcome.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Harish Cheruvara
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Nadisha Gamage
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Peter J. Harrison
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Ryan Lithgo
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| |
Collapse
|
13
|
Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A. Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 2020; 13:10.1007/s12551-020-00772-8. [PMID: 33188638 PMCID: PMC7930197 DOI: 10.1007/s12551-020-00772-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an intrinsically fluorescent neurotransmitter found in organisms spanning a wide evolutionary range. Serotonin exerts its diverse actions by binding to distinct cell membrane receptors which are classified into many groups. Serotonin receptors are involved in regulating a diverse array of physiological signaling pathways and belong to the family of either G protein-coupled receptors (GPCRs) or ligand-gated ion channels. Serotonergic signaling appears to play a key role in the generation and modulation of various cognitive and behavioral functions such as sleep, mood, pain, anxiety, depression, aggression, and learning. Serotonin receptors act as drug targets for a number of diseases, particularly neuropsychiatric disorders. The signaling mechanism and efficiency of serotonin receptors depend on their amazing ability to rapidly access multiple conformational states. This conformational plasticity, necessary for the wide variety of functions displayed by serotonin receptors, is regulated by binding to various ligands. In this review, we provide a succinct overview of recent developments in generating and analyzing high-resolution structures of serotonin receptors obtained using crystallography and cryo-electron microscopy. Capturing structures of distinct conformational states is crucial for understanding the mechanism of action of these receptors, which could provide important insight for rational drug design targeting serotonin receptors. We further provide emerging information and insight from studies on interactions of membrane lipids (such as cholesterol) with serotonin receptors. We envision that a judicious combination of analysis of high-resolution structures and receptor-lipid interaction would allow a comprehensive understanding of GPCR structure, function and dynamics, thereby leading to efficient drug discovery.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Sukanya Mozumder
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | - Aritra Bej
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Sujoy Mukherjee
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201 002, India
| | | |
Collapse
|
14
|
Membrane protein crystallography in the era of modern structural biology. Biochem Soc Trans 2020; 48:2505-2524. [DOI: 10.1042/bst20200066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The aim of structural biology has been always the study of biological macromolecules structures and their mechanistic behaviour at molecular level. To achieve its goal, multiple biophysical methods and approaches have become part of the structural biology toolbox. Considered as one of the pillars of structural biology, X-ray crystallography has been the most successful method for solving three-dimensional protein structures at atomic level to date. It is however limited by the success in obtaining well-ordered protein crystals that diffract at high resolution. This is especially true for challenging targets such as membrane proteins (MPs). Understanding structure-function relationships of MPs at the biochemical level is vital for medicine and drug discovery as they play critical roles in many cellular processes. Though difficult, structure determination of MPs by X-ray crystallography has significantly improved in the last two decades, mainly due to many relevant technological and methodological developments. Today, numerous MP crystal structures have been solved, revealing many of their mechanisms of action. Yet the field of structural biology has also been through significant technological breakthroughs in recent years, particularly in the fields of single particle electron microscopy (cryo-EM) and X-ray free electron lasers (XFELs). Here we summarise the most important advancements in the field of MP crystallography and the significance of these developments in the present era of modern structural biology.
Collapse
|
15
|
Martiel I, Huang CY, Villanueva-Perez P, Panepucci E, Basu S, Caffrey M, Pedrini B, Bunk O, Stampanoni M, Wang M. Low-dose in situ prelocation of protein microcrystals by 2D X-ray phase-contrast imaging for serial crystallography. IUCRJ 2020; 7:1131-1141. [PMID: 33209324 PMCID: PMC7642777 DOI: 10.1107/s2052252520013238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Serial protein crystallography has emerged as a powerful method of data collection on small crystals from challenging targets, such as membrane proteins. Multiple microcrystals need to be located on large and often flat mounts while exposing them to an X-ray dose that is as low as possible. A crystal-prelocation method is demonstrated here using low-dose 2D full-field propagation-based X-ray phase-contrast imaging at the X-ray imaging beamline TOMCAT at the Swiss Light Source (SLS). This imaging step provides microcrystal coordinates for automated serial data collection at a microfocus macromolecular crystallography beamline on samples with an essentially flat geometry. This prelocation method was applied to microcrystals of a soluble protein and a membrane protein, grown in a commonly used double-sandwich in situ crystallization plate. The inner sandwiches of thin plastic film enclosing the microcrystals in lipid cubic phase were flash cooled and imaged at TOMCAT. Based on the obtained crystal coordinates, both still and rotation wedge serial data were collected automatically at the SLS PXI beamline, yielding in both cases a high indexing rate. This workflow can be easily implemented at many synchrotron facilities using existing equipment, or potentially integrated as an online technique in the next-generation macromolecular crystallography beamline, and thus benefit a number of dose-sensitive challenging protein targets.
Collapse
Affiliation(s)
- Isabelle Martiel
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Pablo Villanueva-Perez
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- Synchrotron Radiation Research and NanoLund, Lund University, Box 118, Lund, 221 00, Sweden
| | - Ezequiel Panepucci
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Shibom Basu
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- EMBL Grenoble, 71 avenue des Martyrs, Grenoble, 38042, France
| | - Martin Caffrey
- School of Medicine and School of Biochemistry and Immunology, Trinity College, Dublin 2, D02 R590, Ireland
| | - Bill Pedrini
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Oliver Bunk
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| | - Marco Stampanoni
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
- Institute of Biomedical Engineering, University and ETH Zurich, Zurich, 8092, Switzerland
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, Switzerland
| |
Collapse
|
16
|
Zhu L, Bu G, Jing L, Shi D, Lee MY, Gonen T, Liu W, Nannenga BL. Structure Determination from Lipidic Cubic Phase Embedded Microcrystals by MicroED. Structure 2020; 28:1149-1159.e4. [PMID: 32735770 PMCID: PMC7544639 DOI: 10.1016/j.str.2020.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/02/2020] [Accepted: 07/13/2020] [Indexed: 01/22/2023]
Abstract
The lipidic cubic phase (LCP) technique has proved to facilitate the growth of high-quality crystals that are otherwise difficult to grow by other methods. However, the crystal size optimization process could be time and resource consuming, if it ever happens. Therefore, improved techniques for structure determination using these small crystals is an important strategy in diffraction technology development. Microcrystal electron diffraction (MicroED) is a technique that uses a cryo-transmission electron microscopy to collect electron diffraction data and determine high-resolution structures from very thin micro- and nanocrystals. In this work, we have used modified LCP and MicroED protocols to analyze crystals embedded in LCP converted by 2-methyl-2,4-pentanediol or lipase, including Proteinase K crystals grown in solution, cholesterol crystals, and human adenosine A2A receptor crystals grown in LCP. These results set the stage for the use of MicroED to analyze microcrystalline samples grown in LCP, especially for those highly challenging membrane protein targets.
Collapse
Affiliation(s)
- Lan Zhu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Guanhong Bu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Liang Jing
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Dan Shi
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Ming-Yue Lee
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Departments of Biological Chemistry and Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Liu
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, AZ 85287, USA.
| | - Brent L Nannenga
- Biodesign Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, 727 East Tyler Street, Tempe, AZ 85287, USA; School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
17
|
Takaba K, Maki-Yonekura S, Yonekura K. Collecting large datasets of rotational electron diffraction with ParallEM and SerialEM. J Struct Biol 2020; 211:107549. [DOI: 10.1016/j.jsb.2020.107549] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/03/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
|
18
|
Assmann GM, Wang M, Diederichs K. Making a difference in multi-data-set crystallography: simple and deterministic data-scaling/selection methods. Acta Crystallogr D Struct Biol 2020; 76:636-652. [PMID: 32627737 PMCID: PMC7336379 DOI: 10.1107/s2059798320006348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Phasing by single-wavelength anomalous diffraction (SAD) from multiple crystallographic data sets can be particularly demanding because of the weak anomalous signal and possible non-isomorphism. The identification and exclusion of non-isomorphous data sets by suitable indicators is therefore indispensable. Here, simple and robust data-selection methods are described. A multi-dimensional scaling procedure is first used to identify data sets with large non-isomorphism relative to clusters of other data sets. Within each cluster that it identifies, further selection is based on the weighted ΔCC1/2, a quantity representing the influence of a set of reflections on the overall CC1/2 of the merged data. The anomalous signal is further improved by optimizing the scaling protocol. The success of iterating the selection and scaling steps was verified by substructure determination and subsequent structure solution. Three serial synchrotron crystallography (SSX) SAD test cases with hundreds of partial data sets and one test case with 62 complete data sets were analyzed. Structure solution was dramatically simplified with this procedure, and enabled solution of the structures after a few selection/scaling iterations. To explore the limits, the procedure was tested with much fewer data than originally required and could still solve the structure in several cases. In addition, an SSX data challenge, minimizing the number of (simulated) data sets necessary to solve the structure, was significantly underbid.
Collapse
Affiliation(s)
- Greta M. Assmann
- Department of Biology, University of Konstanz, Box 647, D-78457 Konstanz, Germany
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Kay Diederichs
- Department of Biology, University of Konstanz, Box 647, D-78457 Konstanz, Germany
| |
Collapse
|
19
|
Huang CY, Meier N, Caffrey M, Wang M, Olieric V. 3D-printed holders for in meso in situ fixed-target serial X-ray crystallography. J Appl Crystallogr 2020; 53:854-859. [PMID: 32684901 PMCID: PMC7312129 DOI: 10.1107/s1600576720002897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/01/2020] [Indexed: 11/10/2022] Open
Abstract
The in meso in situ serial X-ray crystallography method was developed to ease the handling of small fragile crystals of membrane proteins and for rapid data collection on hundreds of microcrystals directly in the growth medium without the need for crystal harvesting. To facilitate mounting of these in situ samples on a goniometer at cryogenic or at room temperatures, two new 3D-printed holders have been developed. They provide for cubic and sponge phase sample stability in the X-ray beam and are compatible with sample-changing robots. The holders can accommodate a variety of window material types, as well as bespoke samples for diffraction screening and data collection at conventional macromolecular crystallography beamlines. They can be used for convenient post-crystallization treatments such as ligand and heavy-atom soaking. The design, assembly and application of the holders for in situ serial crystallography are described. Files for making the holders using a 3D printer are included as supporting information.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Nathalie Meier
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology Group, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, D02 R590, Ireland
| | - Meitian Wang
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Vincent Olieric
- Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| |
Collapse
|
20
|
Jaeger K, Bruenle S, Weinert T, Guba W, Muehle J, Miyazaki T, Weber M, Furrer A, Haenggi N, Tetaz T, Huang CY, Mattle D, Vonach JM, Gast A, Kuglstatter A, Rudolph MG, Nogly P, Benz J, Dawson RJP, Standfuss J. Structural Basis for Allosteric Ligand Recognition in the Human CC Chemokine Receptor 7. Cell 2020; 178:1222-1230.e10. [PMID: 31442409 PMCID: PMC6709783 DOI: 10.1016/j.cell.2019.07.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/19/2019] [Accepted: 07/12/2019] [Indexed: 11/15/2022]
Abstract
The CC chemokine receptor 7 (CCR7) balances immunity and tolerance by homeostatic trafficking of immune cells. In cancer, CCR7-mediated trafficking leads to lymph node metastasis, suggesting the receptor as a promising therapeutic target. Here, we present the crystal structure of human CCR7 fused to the protein Sialidase NanA by using data up to 2.1 Å resolution. The structure shows the ligand Cmp2105 bound to an intracellular allosteric binding pocket. A sulfonamide group, characteristic for various chemokine receptor ligands, binds to a patch of conserved residues in the Gi protein binding region between transmembrane helix 7 and helix 8. We demonstrate how structural data can be used in combination with a compound repository and automated thermal stability screening to identify and modulate allosteric chemokine receptor antagonists. We detect both novel (CS-1 and CS-2) and clinically relevant (CXCR1-CXCR2 phase-II antagonist Navarixin) CCR7 modulators with implications for multi-target strategies against cancer.
Collapse
Affiliation(s)
- Kathrin Jaeger
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI
| | - Steffen Bruenle
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI
| | - Tobias Weinert
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI
| | - Wolfgang Guba
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Jonas Muehle
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI; Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Takuya Miyazaki
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland; Chugai Pharmaceutical Co., Ltd., Research Division, Kamakura Research Labs, Kamakura, Kanagawa, Japan
| | - Martin Weber
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Antonia Furrer
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI
| | - Noemi Haenggi
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Tim Tetaz
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Chia-Ying Huang
- Macromolecular Crystallography, Swiss Light Source, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Daniel Mattle
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI; Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Jean-Marie Vonach
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Alain Gast
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Andreas Kuglstatter
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Przemyslaw Nogly
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI
| | - Joerg Benz
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Roger J P Dawson
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland.
| | - Joerg Standfuss
- Laboratory of Biomolecular Research, Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI.
| |
Collapse
|
21
|
Membrane Protein Preparation for Serial Crystallography Using High-Viscosity Injectors: Rhodopsin as an Example. Methods Mol Biol 2020; 2127:321-338. [PMID: 32112331 DOI: 10.1007/978-1-0716-0373-4_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Membrane proteins are highly interesting targets due to their pivotal role in cell function and disease. They are inserted in cell membranes, are often intrinsically flexible, and can adopt several conformational states to carry out their function. Although most overall folds of membrane proteins are known, many questions remain about specific functionally relevant intramolecular rearrangements that require experimental structure determination. Here, using the example of rhodopsin, we describe how to prepare and analyze membrane protein crystals for serial crystallography at room temperature, a new technique allowing to merge diffraction data from thousands of injector-delivered crystals that are too tiny for classical single-crystal analysis even in cryogenic conditions. The application of serial crystallography for studying protein dynamics is mentioned.
Collapse
|
22
|
Takemaru L, Guo G, Zhu P, Hendrickson WA, McSweeney S, Liu Q. PyMDA: microcrystal data assembly using Python. J Appl Crystallogr 2020; 53:277-281. [PMID: 32047415 PMCID: PMC6998775 DOI: 10.1107/s160057671901673x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/13/2019] [Indexed: 11/15/2022] Open
Abstract
The recent developments at microdiffraction X-ray beamlines are making microcrystals of macromolecules appealing subjects for routine structural analysis. Microcrystal diffraction data collected at synchrotron microdiffraction beamlines may be radiation damaged with incomplete data per microcrystal and with unit-cell variations. A multi-stage data assembly method has previously been designed for microcrystal synchrotron crystallography. Here the strategy has been implemented as a Python program for microcrystal data assembly (PyMDA). PyMDA optimizes microcrystal data quality including weak anomalous signals through iterative crystal and frame rejections. Beyond microcrystals, PyMDA may be applicable for assembling data sets from larger crystals for improved data quality.
Collapse
Affiliation(s)
- Lina Takemaru
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Photon Sciences Division, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sean McSweeney
- Photon Sciences Division, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Photon Sciences Division, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
23
|
Zhang B, Perez C. Stabilization and Crystallization of a Membrane Protein Involved in Lipid Transport. Methods Mol Biol 2020; 2127:283-292. [PMID: 32112329 DOI: 10.1007/978-1-0716-0373-4_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lipoteichoic acids (LTA) are ubiquitous cell wall components of Gram-positive bacteria. In Staphylococcus aureus LTA are composed of a polymer with 1,3-linked glycerol phosphate repeating units anchored to the plasma membrane. The anchor molecule is a lipid-linked disaccharide (anchor-LLD) synthesized at the cytoplasmic leaflet of the membrane. The anchor lipid becomes accessible at the outer leaflet of the membrane after the flippase LtaA catalyzes translocation. Recently we have elucidated the structure of LtaA using vapor diffusion X-ray crystallography and in situ annealing. We were able to obtain LtaA crystals after optimization of purification protocols that led to stabilization of LtaA isolated in detergent micelles. Here we report a protocol that describes the purification, stabilization, crystallization, and data collection strategies carried out to determine the structure of LtaA. We highlight key points that can be used to determine crystal structures of other membrane proteins.
Collapse
Affiliation(s)
- Bing Zhang
- Biozentrum, University of Basel, Basel, Switzerland
| | - Camilo Perez
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Huang CY, Olieric V, Caffrey M, Wang M. In Meso In Situ Serial X-Ray Crystallography (IMISX): A Protocol for Membrane Protein Structure Determination at the Swiss Light Source. Methods Mol Biol 2020; 2127:293-319. [PMID: 32112330 DOI: 10.1007/978-1-0716-0373-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lipid cubic phases (LCP) have enabled the determination of many important high-resolution structures of membrane proteins such as G-protein-coupled receptors, photosensitive proteins, enzymes, channels, and transporters. However, harvesting the crystals from the glass or plastic plates in which crystals grow is challenging. The in meso in situ serial X-ray crystallography (IMISX) method uses thin plastic windowed plates that minimize LCP crystal manipulation. The method, which is compatible with high-throughput in situ measurements, allows systematic diffraction screening and rapid data collection from hundreds of microcrystals in in meso crystallization wells without direct crystal harvesting. In this chapter, we describe an IMISX protocol for in situ serial X-ray data collection of LCP-grown crystals at both cryogenic and room temperatures which includes the crystallization setup, sample delivery, automated serial diffraction data collection, and experimental phasing. We also detail how the IMISX method was applied successfully for the structure determination of two novel targets-the undecaprenyl-pyrophosphate phosphatase BacA and the chemokine G-protein-coupled receptor CCR2A.
Collapse
Affiliation(s)
- Chia-Ying Huang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland.
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Martin Caffrey
- Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| |
Collapse
|
25
|
Cheng R, Huang C, Hennig M, Nar H, Schnapp G. In situ
crystallography as an emerging method for structure solution of membrane proteins: the case of CCR2A. FEBS J 2019; 287:866-873. [DOI: 10.1111/febs.15098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/10/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022]
Affiliation(s)
| | - Chia‐Ying Huang
- Swiss Light Source Paul Scherrer Institute Villigen Switzerland
| | | | - Herbert Nar
- Boehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| | - Gisela Schnapp
- Boehringer Ingelheim Pharma GmbH & Co. KG Biberach Germany
| |
Collapse
|
26
|
Guo G, Zhu P, Fuchs MR, Shi W, Andi B, Gao Y, Hendrickson WA, McSweeney S, Liu Q. Synchrotron microcrystal native-SAD phasing at a low energy. IUCRJ 2019; 6:532-542. [PMID: 31316798 PMCID: PMC6608635 DOI: 10.1107/s2052252519004536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/03/2019] [Indexed: 05/31/2023]
Abstract
De novo structural evaluation of native biomolecules from single-wavelength anomalous diffraction (SAD) is a challenge because of the weakness of the anomalous scattering. The anomalous scattering from relevant native elements - primarily sulfur in proteins and phospho-rus in nucleic acids - increases as the X-ray energy decreases toward their K-edge transitions. Thus, measurements at a lowered X-ray energy are promising for making native SAD routine and robust. For microcrystals with sizes less than 10 µm, native-SAD phasing at synchrotron microdiffraction beamlines is even more challenging because of difficulties in sample manipulation, diffraction data collection and data analysis. Native-SAD analysis from microcrystals by using X-ray free-electron lasers has been demonstrated but has required use of thousands of thousands of microcrystals to achieve the necessary accuracy. Here it is shown that by exploitation of anomalous microdiffraction signals obtained at 5 keV, by the use of polyimide wellmounts, and by an iterative crystal and frame-rejection method, microcrystal native-SAD phasing is possible from as few as about 1 200 crystals. Our results show the utility of low-energy native-SAD phasing with microcrystals at synchrotron microdiffraction beamlines.
Collapse
Affiliation(s)
- Gongrui Guo
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Martin R. Fuchs
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wuxian Shi
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Babak Andi
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Yuan Gao
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Sean McSweeney
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Photon Science, NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
27
|
Basu S, Finke A, Vera L, Wang M, Olieric V. Making routine native SAD a reality: lessons from beamline X06DA at the Swiss Light Source. Acta Crystallogr D Struct Biol 2019; 75:262-271. [PMID: 30950397 PMCID: PMC6450063 DOI: 10.1107/s2059798319003103] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Native single-wavelength anomalous dispersion (SAD) is the most attractive de novo phasing method in macromolecular crystallography, as it directly utilizes intrinsic anomalous scattering from native crystals. However, the success of such an experiment depends on accurate measurements of the reflection intensities and therefore on careful data-collection protocols. Here, the low-dose, multiple-orientation data-collection protocol for native SAD phasing developed at beamline X06DA (PXIII) at the Swiss Light Source is reviewed, and its usage over the last four years on conventional crystals (>50 µm) is reported. Being experimentally very simple and fast, this method has gained popularity and has delivered 45 de novo structures to date (13 of which have been published). Native SAD is currently the primary choice for experimental phasing among X06DA users. The method can address challenging cases: here, native SAD phasing performed on a streptavidin-biotin crystal with P21 symmetry and a low Bijvoet ratio of 0.6% is highlighted. The use of intrinsic anomalous signals as sequence markers for model building and the assignment of ions is also briefly described.
Collapse
Affiliation(s)
- Shibom Basu
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Aaron Finke
- MacCHESS, Cornell University, Ithaca, New York, USA
| | - Laura Vera
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, Switzerland
| |
Collapse
|