1
|
Manavski N, Schwenkert S, Kunz HH, Leister D, Meurer J. Targeted translation inhibition of chloroplast and mitochondrial mRNAs by designer pentatricopeptide repeat proteins. Nucleic Acids Res 2025; 53:gkaf222. [PMID: 40138717 PMCID: PMC11941472 DOI: 10.1093/nar/gkaf222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are crucial for organellar gene expression. To establish a tool for gene expression manipulation in Arabidopsis plastids and genetically inaccessible mitochondria, we engineered designer (dPPR) proteins to specifically inhibit the translation of organellar mRNAs by masking their start codons. Unlike prior methods for targeted downregulation of gene expression, which rely on re-targeting native PPR proteins to RNA sequences closely related to their original targets, our approach employs a synthetic P-type PPR scaffold that can be designed to bind any RNA sequence of interest. Here, using dPPR-psbK and dPPR-nad7, we targeted the psbK mRNA in chloroplasts and the nad7 mRNA in mitochondria, respectively. dPPR-psbK effectively bound to psbK mRNA and inhibited its translation with high specificity, resulting in disrupted PSII supercomplexes and reduced photosynthetic efficiency. dPPR-nad7 suppressed nad7 translation, affecting NADH oxidase activity in complex I and growth retardation. Comparing phenotypes with tobacco psbK knockouts and nad7 knockdown bir6-2 mutants, along with quantitative proteomics, showed no clear evidence of physiologically relevant off-target effects. Our findings establish dPPR proteins as precise tools for targeted translation inhibition, facilitating functional studies of organellar genes and offering a novel approach with potential for manipulating organellar gene expression in diverse plant species.
Collapse
Affiliation(s)
- Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Serena Schwenkert
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Hans-Henning Kunz
- Plant Biochemistry, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-Universität Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Wang Y, Tan BC. Pentatricopeptide repeat proteins in plants: Cellular functions, action mechanisms, and potential applications. PLANT COMMUNICATIONS 2025; 6:101203. [PMID: 39644091 PMCID: PMC11897456 DOI: 10.1016/j.xplc.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in nearly all aspects of post-transcriptional processing in plant mitochondria and plastids, playing vital roles in plant growth, development, cytoplasmic male sterility restoration, and responses to biotic and abiotic stresses. Over the last three decades, significant advances have been made in understanding the functions of PPR proteins and the primary mechanisms through which they mediate post-transcriptional processing. This review aims to summarize these advancements, highlighting the mechanisms by which PPR proteins facilitate RNA editing, intron splicing, and RNA maturation in the context of organellar gene expression. We also present the latest progress in PPR engineering and discuss its potential as a biotechnological tool. Additionally, we discuss key challenges and questions that remain in PPR research.
Collapse
Affiliation(s)
- Yong Wang
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
3
|
Manavski N, Abdel‐Salam E, Schwenkert S, Kunz H, Brachmann A, Leister D, Meurer J. Targeted introduction of premature stop codon in plant mitochondrial mRNA by a designer pentatricopeptide repeat protein with C-to-U editing function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17247. [PMID: 39917821 PMCID: PMC11803495 DOI: 10.1111/tpj.17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 02/11/2025]
Abstract
RNA editing is a crucial post-transcriptional modification in endosymbiotic plant organelles, predominantly involving C-to-U conversions. Pentatricopeptide repeat (PPR) proteins play a key role in this process. To establish a system for gene expression manipulation in genetically inaccessible mitochondria, we engineered a synthetic PPR protein, dPPR-nad7-DYW, to induce de novo C-to-U editing in the NADH dehydrogenase subunit 7 (nad7) mRNA of Arabidopsis thaliana, thereby creating a premature stop codon. This designer protein, composed of 13 P-type PPR domains, was fused with the DYW-type cytidine deaminase domain from Physcomitrium patens PpPPR_56 and programmed to bind a specific nad7 mRNA segment. In vitro binding assays confirmed the specificity of dPPR-nad7-DYW for its target sequence. When expressed in Arabidopsis plants, dPPR-nad7-DYW achieved up to 85% editing efficiency at the target site, successfully introducing a premature stop codon in nad7 mRNA. This resulted in reduced polysome loading of nad7 transcripts and a phenotype characteristic of mitochondrial complex I dysfunction. RNA-sequencing revealed potential off-target editing events, albeit at lower frequencies. Our study demonstrates the successful application of an editing factor with a synthetic P-type PPR tract targeting a de novo editing site in plant mitochondria, achieving high editing efficiency. This approach opens new avenues for manipulating organellar gene expression and studying mitochondrial gene function in plants and other eukaryotes.
Collapse
Affiliation(s)
- Nikolay Manavski
- Plant Molecular Biology, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Eslam Abdel‐Salam
- Plant Molecular Biology, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Serena Schwenkert
- Plant Molecular Biology, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Hans‐Henning Kunz
- Plant Biochemistry, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Andreas Brachmann
- Genetics, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of BiologyLudwig‐Maximilians‐Universität MunichGroßhaderner Street 2‐4Planegg‐Martinsried82152Germany
| |
Collapse
|
4
|
Ali NA, Song W, Huang J, Wu D, Zhao X. Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. Crit Rev Biotechnol 2024; 44:1552-1573. [PMID: 38238104 DOI: 10.1080/07388551.2023.2299789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 11/20/2024]
Abstract
The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.
Collapse
Affiliation(s)
- Nadia Ahmed Ali
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenjian Song
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianyan Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants of Ministry of Agriculture and Rural Affairs, National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Dianxing Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaobo Zhao
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Key Laboratory of Nuclear Agricultural Sciences of Zhejiang Province, Institute of Nuclear Agricultural Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Yamagishi H, Hashimoto A, Fukunaga A, Takenaka M, Terachi T. Identification and variation of a new restorer of fertility gene that induces cleavage in orf138 mRNA of Ogura male sterility in radish. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:231. [PMID: 39320580 PMCID: PMC11424722 DOI: 10.1007/s00122-024-04736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
KEY MESSAGE A new restorer of fertility gene, Rfs, of Ogura cytoplasmic male sterility (CMS) in radish encodes a pentatricopeptide repeat protein that binds to 15 nucleotides in mRNA of the CMS gene, orf138. Nucleotide substitutions in both Rfs and orf138 determine effectiveness and specificity of restoration. Cytoplasmic male sterility (CMS) in plants caused by the expression of abnormal mitochondrial genes results from impaired pollen production. The manifestation of CMS is suppressed by the restorer of fertility (Rf) genes in the nuclear genome. Thus, the CMS-Rf system is a suitable model for studying the direct interactions of mitochondrial and nuclear genes. At least nine haplotypes, of which Type B is ancestry, have been reported for the Ogura CMS gene, orf138, in radish (Raphanus sativus). We previously observed that Rfo encoding a pentatricopeptide repeat (PPR) protein, ORF687, which inhibits the translation of orf138 is ineffective in one haplotype (i.e., Type H). Here, we carried out map-based cloning of another Rf gene (Rfs) that cleaves the orf138 mRNA of Type H. Rfs produces a PPR protein consisting of 15 PPR motifs that binds to the mRNA, cleaving the mRNA at about 50nt downstream of the binding site. However, Rfs was ineffective for Type A because of a single nucleotide substitution in the binding site. Both Rfo and Rfs suppress orf138 expression in ancestral Type B, but they are rendered ineffective in Type H and Type A, respectively, by a single nucleotide substitution in orf138.
Collapse
Affiliation(s)
- Hiroshi Yamagishi
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kita-ku, Kyoto, Kamigamo, 603-8555, Japan.
| | - Ayako Hashimoto
- Center for Plant Sciences, Kyoto Sangyo University, Motoyama, Kita-ku, Kyoto, Kamigamo, 603-8555, Japan
| | - Asumi Fukunaga
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kita-ku, Kyoto, Kamigamo, 603-8555, Japan
| | - Mizuki Takenaka
- Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-9502, Japan
| | - Toru Terachi
- Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kita-ku, Kyoto, Kamigamo, 603-8555, Japan.
| |
Collapse
|
6
|
Kwok van der Giezen F, Honkanen S, Colas des Francs-Small C, Bond C, Small I. Applications of Synthetic Pentatricopeptide Repeat Proteins. PLANT & CELL PHYSIOLOGY 2024; 65:503-515. [PMID: 38035801 PMCID: PMC11094755 DOI: 10.1093/pcp/pcad150] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023]
Abstract
RNA-binding proteins play integral roles in the regulation of essential processes in cells and as such are attractive targets for engineering to manipulate gene expression at the RNA level. Expression of transcripts in chloroplasts and mitochondria is heavily regulated by pentatricopeptide repeat (PPR) proteins. The diverse roles of PPR proteins and their naturally modular architecture make them ideal candidates for engineering. Synthetic PPR proteins are showing great potential to become valuable tools for controlling the expression of plastid and mitochondrial transcripts. In this review, by 'synthetic', we mean both rationally modified natural PPR proteins and completely novel proteins designed using the principles learned from their natural counterparts. We focus on the many different applications of synthetic PPR proteins, covering both their use in basic research to learn more about protein-RNA interactions and their use to achieve specific outcomes in RNA processing and the control of gene expression. We describe the challenges associated with the design, construction and deployment of synthetic PPR proteins and provide perspectives on how they might be assembled and used in future biotechnology applications.
Collapse
Affiliation(s)
- Farley Kwok van der Giezen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Suvi Honkanen
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Charles Bond
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Yang F, Vincis Pereira Sanglard L, Lee CP, Ströher E, Singh S, Oh GGK, Millar AH, Small I, Colas des Francs-Small C. Mitochondrial atp1 mRNA knockdown by a custom-designed pentatricopeptide repeat protein alters ATP synthase. PLANT PHYSIOLOGY 2024; 194:2631-2647. [PMID: 38206203 PMCID: PMC10980415 DOI: 10.1093/plphys/kiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024]
Abstract
Spontaneous mutations are rare in mitochondria and the lack of mitochondrial transformation methods has hindered genetic analyses. We show that a custom-designed RNA-binding pentatricopeptide repeat (PPR) protein binds and specifically induces cleavage of ATP synthase subunit1 (atp1) mRNA in mitochondria, significantly decreasing the abundance of the Atp1 protein and the assembled F1Fo ATP synthase in Arabidopsis (Arabidopsis thaliana). The transformed plants are characterized by delayed vegetative growth and reduced fertility. Five-fold depletion of Atp1 level was accompanied by a decrease in abundance of other ATP synthase subunits and lowered ATP synthesis rate of isolated mitochondria, but no change to mitochondrial electron transport chain complexes, adenylates, or energy charge in planta. Transcripts for amino acid transport and a variety of stress response processes were differentially expressed in lines containing the PPR protein, indicating changes to achieve cellular homeostasis when ATP synthase was highly depleted. Leaves of ATP synthase-depleted lines showed higher respiratory rates and elevated steady-state levels of numerous amino acids, most notably of the serine family. The results show the value of using custom-designed PPR proteins to influence the expression of specific mitochondrial transcripts to carry out reverse genetic studies on mitochondrial gene functions and the consequences of ATP synthase depletion on cellular functions in Arabidopsis.
Collapse
Affiliation(s)
- Fei Yang
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Lilian Vincis Pereira Sanglard
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chun-Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Elke Ströher
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Swati Singh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Glenda Guec Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
8
|
Huynh SD, Melonek J, Colas des Francs-Small C, Bond CS, Small I. A unique C-terminal domain contributes to the molecular function of Restorer-of-fertility proteins in plant mitochondria. THE NEW PHYTOLOGIST 2023; 240:830-845. [PMID: 37551058 DOI: 10.1111/nph.19166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Restorer-of-fertility (Rf) genes encode pentatricopeptide repeat (PPR) proteins that are targeted to mitochondria where they specifically bind to transcripts that induce cytoplasmic male sterility and repress their expression. In searching for a molecular signature unique to this class of proteins, we found that a majority of known Rf proteins have a distinct domain, which we called RfCTD (Restorer-of-fertility C-terminal domain), and its presence correlates with the ability to induce cleavage of the mitochondrial RNA target. A screen of 219 angiosperm genomes from 123 genera using a sequence profile that can quickly and accurately identify RfCTD sequences revealed considerable variation in RFL/RfCTD gene numbers across flowering plants. We observed that plant genera with bisexual flowers have significantly higher numbers of RFL genes compared to those with unisexual flowers, consistent with a role of these proteins in restoration of male fertility. We show that removing the RfCTD from the RFL protein RNA PROCESSING FACTOR 2-nad6 prevented cleavage of its RNA target, the nad6 transcript, in Arabidopsis thaliana mitochondria. We provide a simple way of identifying putative Rf candidates in genome sequences, new insights into the molecular mode of action of Rf proteins and the evolution of fertility restoration in flowering plants.
Collapse
Affiliation(s)
- Sang Dang Huynh
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Joanna Melonek
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Catherine Colas des Francs-Small
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ian Small
- School of Molecular Sciences, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
9
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
10
|
Vincis Pereira Sanglard L, Small ID, Colas des Francs-Small C. Alteration of Mitochondrial Transcript Expression in Arabidopsis thaliana Using a Custom-Made Library of Pentatricopeptide Repeat Proteins. Int J Mol Sci 2023; 24:13233. [PMID: 37686040 PMCID: PMC10487680 DOI: 10.3390/ijms241713233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are considered a potential tool for manipulating organelle gene expression in plants because they can recognise a wide range of different RNA sequences, and the molecular basis for this sequence recognition is partially known and understood. A library of redesigned PPR proteins related to restorer-of-fertility proteins was created and transformed into plants in order to target mitochondrial transcripts. Ninety different variants tested in vivo showed a wide range of phenotypes. One of these lines, which displayed slow growth and downward curled leaves, showed a clear reduction in complex V. The phenotype was due to a specific cleavage of atp1 transcripts induced by a modified PPR protein from the library, validating the use of this library as a source of mitochondrial 'mutants'. This study is a step towards developing specific RNA targeting tools using PPR proteins that can be aimed at desired targets.
Collapse
Affiliation(s)
| | | | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
11
|
Small I, Melonek J, Bohne AV, Nickelsen J, Schmitz-Linneweber C. Plant organellar RNA maturation. THE PLANT CELL 2023; 35:1727-1751. [PMID: 36807982 PMCID: PMC10226603 DOI: 10.1093/plcell/koad049] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/05/2023] [Accepted: 01/17/2023] [Indexed: 05/30/2023]
Abstract
Plant organellar RNA metabolism is run by a multitude of nucleus-encoded RNA-binding proteins (RBPs) that control RNA stability, processing, and degradation. In chloroplasts and mitochondria, these post-transcriptional processes are vital for the production of a small number of essential components of the photosynthetic and respiratory machinery-and consequently for organellar biogenesis and plant survival. Many organellar RBPs have been functionally assigned to individual steps in RNA maturation, often specific to selected transcripts. While the catalog of factors identified is ever-growing, our knowledge of how they achieve their functions mechanistically is far from complete. This review summarizes the current knowledge of plant organellar RNA metabolism taking an RBP-centric approach and focusing on mechanistic aspects of RBP functions and the kinetics of the processes they are involved in.
Collapse
Affiliation(s)
- Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | | | - Jörg Nickelsen
- Department of Molecular Plant Sciences, LMU Munich, 82152 Martinsried, Germany
| | | |
Collapse
|
12
|
Lee K, Kang H. Engineering of pentatricopeptide repeat proteins in organellar gene regulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1144298. [PMID: 36938060 PMCID: PMC10014608 DOI: 10.3389/fpls.2023.1144298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Kwanuk Lee
- Department of Biology, Jeju National University, Jeju, Republic of Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
13
|
McDowell R, Small I, Bond CS. Synthetic PPR proteins as tools for sequence-specific targeting of RNA. Methods 2022; 208:19-26. [DOI: 10.1016/j.ymeth.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
|
14
|
Lesch E, Schilling MT, Brenner S, Yang Y, Gruss O, Knoop V, Schallenberg-Rüdinger M. Plant mitochondrial RNA editing factors can perform targeted C-to-U editing of nuclear transcripts in human cells. Nucleic Acids Res 2022; 50:9966-9983. [PMID: 36107771 PMCID: PMC9508816 DOI: 10.1093/nar/gkac752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/12/2022] Open
Abstract
RNA editing processes are strikingly different in animals and plants. Up to thousands of specific cytidines are converted into uridines in plant chloroplasts and mitochondria whereas up to millions of adenosines are converted into inosines in animal nucleo-cytosolic RNAs. It is unknown whether these two different RNA editing machineries are mutually incompatible. RNA-binding pentatricopeptide repeat (PPR) proteins are the key factors of plant organelle cytidine-to-uridine RNA editing. The complete absence of PPR mediated editing of cytosolic RNAs might be due to a yet unknown barrier that prevents its activity in the cytosol. Here, we transferred two plant mitochondrial PPR-type editing factors into human cell lines to explore whether they could operate in the nucleo-cytosolic environment. PPR56 and PPR65 not only faithfully edited their native, co-transcribed targets but also different sets of off-targets in the human background transcriptome. More than 900 of such off-targets with editing efficiencies up to 91%, largely explained by known PPR-RNA binding properties, were identified for PPR56. Engineering two crucial amino acid positions in its PPR array led to predictable shifts in target recognition. We conclude that plant PPR editing factors can operate in the entirely different genetic environment of the human nucleo-cytosol and can be intentionally re-engineered towards new targets.
Collapse
Affiliation(s)
- Elena Lesch
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Maximilian T Schilling
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Sarah Brenner
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Yingying Yang
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Oliver J Gruss
- Institut für Genetik, Abteilung Zellteilung, Universität Bonn , Karlrobert-Kreiten-Str. 13 , D-53115 Bonn , Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn , Kirschallee 1 , D-53115 Bonn , Germany
| |
Collapse
|
15
|
Sugita M. An Overview of Pentatricopeptide Repeat (PPR) Proteins in the Moss Physcomitrium patens and Their Role in Organellar Gene Expression. PLANTS 2022; 11:plants11172279. [PMID: 36079663 PMCID: PMC9459714 DOI: 10.3390/plants11172279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Pentatricopeptide repeat (PPR) proteins are one type of helical repeat protein that are widespread in eukaryotes. In particular, there are several hundred PPR members in flowering plants. The majority of PPR proteins are localized in the plastids and mitochondria, where they play a crucial role in various aspects of RNA metabolism at the post-transcriptional and translational steps during gene expression. Among the early land plants, the moss Physcomitrium (formerly Physcomitrella) patens has at least 107 PPR protein-encoding genes, but most of their functions remain unclear. To elucidate the functions of PPR proteins, a reverse-genetics approach has been applied to P. patens. To date, the molecular functions of 22 PPR proteins were identified as essential factors required for either mRNA processing and stabilization, RNA splicing, or RNA editing. This review examines the P. patens PPR gene family and their current functional characterization. Similarities and a diversity of functions of PPR proteins between P. patens and flowering plants and their roles in the post-transcriptional regulation of organellar gene expression are discussed.
Collapse
Affiliation(s)
- Mamoru Sugita
- Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
16
|
Zhu G, Zhu H. Modified Gene Editing Systems: Diverse Bioengineering Tools and Crop Improvement. FRONTIERS IN PLANT SCIENCE 2022; 13:847169. [PMID: 35371136 PMCID: PMC8969578 DOI: 10.3389/fpls.2022.847169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Gene-editing systems have emerged as bioengineering tools in recent years. Classical gene-editing systems include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9), and these tools allow specific sequences to be targeted and edited. Various modified gene-editing systems have been established based on classical gene-editing systems. Base editors (BEs) can accurately carry out base substitution on target sequences, while prime editors (PEs) can replace or insert sequences. CRISPR systems targeting mitochondrial genomes and RNA have also been explored and established. Multiple gene-editing techniques based on CRISPR/Cas9 have been established and applied to genome engineering. Modified gene-editing systems also make transgene-free plants more readily available. In this review, we discuss the modifications made to gene-editing systems in recent years and summarize the capabilities, deficiencies, and applications of these modified gene-editing systems. Finally, we discuss the future developmental direction and challenges of modified gene-editing systems.
Collapse
Affiliation(s)
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Yang J, Yang X, Su T, Hu Z, Zhang M. The Development of Mitochondrial Gene Editing Tools and Their Possible Roles in Crop Improvement for Future Agriculture. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100019. [PMID: 36619350 PMCID: PMC9744482 DOI: 10.1002/ggn2.202100019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 01/11/2023]
Abstract
We are living in the era of genome editing. Nowadays, targeted editing of the plant nuclear DNA is prevalent in basic biological research and crop improvement since its first establishment a decade ago. However, achieving the same accomplishment for the plant mitochondrial genome has long been deemed impossible. Recently, the pioneer studies on editing plant mitogenome have been done using the mitochondria-targeted transcription activator-like effector nucleases (mitoTALENs) in rice, rapeseed, and Arabidopsis. It is well documented that mitochondria play essential roles in plant development and stress tolerance, particularly, in cytoplasmic male sterility widely used in production of hybrids. The success of mitochondrial genome editing enables studying the fundamentals of mitochondrial genome. Furthermore, mitochondrial RNA editing (mostly by nuclear-encoded pentatricopeptide repeat (PPR) proteins) in a sequence-specific manner can simultaneously change the production of translatable mitochondrial mRNA. Moreover, direct editing of the nuclear-encoding mitochondria-targeted factors required for plant mitochondrial genome dynamics and recombination may facilitate genetic manipulation of plant mitochondria. Here, the present state of knowledge on editing the plant mitochondrial genome is reviewed.
Collapse
Affiliation(s)
- Jinghua Yang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanya572025China
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhou310058China
| | - Xiaodong Yang
- Departments of Biology and Plant ScienceThe Pennsylvania State UniversityUniversity ParkPA16802USA
| | - Tongbing Su
- Beijing Vegetable Research CenterBeijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Zhongyuan Hu
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanya572025China
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhou310058China
| | - Mingfang Zhang
- Hainan Institute, Zhejiang UniversityYazhou Bay Science and Technology CitySanya572025China
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable ScienceZhejiang UniversityHangzhou310058China
| |
Collapse
|
18
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
19
|
The radish Ogura fertility restorer impedes translation elongation along its cognate CMS-causing mRNA. Proc Natl Acad Sci U S A 2021; 118:2105274118. [PMID: 34433671 DOI: 10.1073/pnas.2105274118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The control of messenger RNA (mRNA) translation has been increasingly recognized as a key regulatory step for gene control, but clear examples in eukaryotes are still scarce. Nucleo-cytoplasmic male sterilities (CMS) represent ideal genetic models to dissect genetic interactions between the mitochondria and the nucleus in plants. This trait is determined by specific mitochondrial genes and is associated with a pollen sterility phenotype that can be suppressed by nuclear genes known as restorer-of-fertility (Rf). In this study, we focused on the Ogura CMS system in rapeseed and showed that reversion to male sterility by the PPR-B fertility restorer (also called Rfo) occurs through a specific translation inhibition of the mitochondria-encoded CMS-causing mRNA orf138 We also demonstrate that PPR-B binds within the coding sequence of orf138 and acts as a ribosome blocker to specifically impede translation elongation along the orf138 mRNA. Rfo is the first recognized fertility restorer shown to act this way. These observations will certainly facilitate the development of synthetic fertility restorers for CMS systems in which efficient natural Rfs are lacking.
Collapse
|
20
|
Zhou W, Melamed D, Banyai G, Meyer C, Tuschl T, Wickens M, Cao J, Fields S. Expanding the binding specificity for RNA recognition by a PUF domain. Nat Commun 2021; 12:5107. [PMID: 34429425 PMCID: PMC8384837 DOI: 10.1038/s41467-021-25433-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
The ability to design a protein to bind specifically to a target RNA enables numerous applications, with the modular architecture of the PUF domain lending itself to new RNA-binding specificities. For each repeat of the Pumilio-1 PUF domain, we generate a library that contains the 8,000 possible combinations of amino acid substitutions at residues critical for RNA contact. We carry out yeast three-hybrid selections with each library against the RNA recognition sequence for Pumilio-1, with any possible base present at the position recognized by the randomized repeat. We use sequencing to score the binding of each variant, identifying many variants with highly repeat-specific interactions. From these data, we generate an RNA binding code specific to each repeat and base. We use this code to design PUF domains against 16 RNAs, and find that some of these domains recognize RNAs with two, three or four changes from the wild type sequence.
Collapse
Affiliation(s)
- Wei Zhou
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, Washington, USA ,grid.34477.330000000122986657Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA ,grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Daniel Melamed
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, Washington, USA ,grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel ,grid.18098.380000 0004 1937 0562Institute of Evolution, University of Haifa, Haifa, Israel
| | - Gabor Banyai
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Cindy Meyer
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Thomas Tuschl
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Marvin Wickens
- grid.14003.360000 0001 2167 3675Department of Biochemistry, University of Wisconsin-Madison, Madison, WI USA
| | - Junyue Cao
- grid.134907.80000 0001 2166 1519The Rockefeller University, New York, NY USA
| | - Stanley Fields
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, Washington, USA ,grid.34477.330000000122986657Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Manavski N, Mathieu S, Rojas M, Méteignier LV, Brachmann A, Barkan A, Hammani K. In vivo stabilization of endogenous chloroplast RNAs by customized artificial pentatricopeptide repeat proteins. Nucleic Acids Res 2021; 49:5985-5997. [PMID: 34037778 PMCID: PMC8191804 DOI: 10.1093/nar/gkab390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/05/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are helical repeat-proteins that bind RNA in a modular fashion with a sequence-specificity that can be manipulated by the use of an amino acid code. As such, PPR repeats are promising scaffolds for the design of RNA binding proteins for synthetic biology applications. However, the in vivo functional capabilities of artificial PPR proteins built from consensus PPR motifs are just starting to be explored. Here, we report in vivo functions of an artificial PPR protein, dPPRrbcL, made of consensus PPR motifs that were designed to bind a sequence near the 5′ end of rbcL transcripts in Arabidopsis chloroplasts. We used a functional complementation assay to demonstrate that this protein bound its intended RNA target with specificity in vivo and that it substituted for a natural PPR protein by stabilizing processed rbcL mRNA. We targeted a second protein of analogous design to the petL 5′ UTR, where it substituted for the native stabilizing PPR protein PGR3, albeit inefficiently. These results showed that artificial PPR proteins can be engineered to functionally mimic the class of native PPR proteins that serve as physical barriers against exoribonucleases.
Collapse
Affiliation(s)
- Nikolay Manavski
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Sébastien Mathieu
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403 USA
| | - Louis-Valentin Méteignier
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Andreas Brachmann
- Genetics, Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried Germany
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403 USA
| | - Kamel Hammani
- To whom correspondence should be addressed. Tel: +33 367155281; Fax: +33 367155300;
| |
Collapse
|
22
|
Li S, Chang L, Zhang J. Advancing organelle genome transformation and editing for crop improvement. PLANT COMMUNICATIONS 2021; 2:100141. [PMID: 33898977 PMCID: PMC8060728 DOI: 10.1016/j.xplc.2021.100141] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/15/2020] [Accepted: 01/01/2021] [Indexed: 05/05/2023]
Abstract
Plant cells contain three organelles that harbor DNA: the nucleus, plastids, and mitochondria. Plastid transformation has emerged as an attractive platform for the generation of transgenic plants, also referred to as transplastomic plants. Plastid genomes have been genetically engineered to improve crop yield, nutritional quality, and resistance to abiotic and biotic stresses, as well as for recombinant protein production. Despite many promising proof-of-concept applications, transplastomic plants have not been commercialized to date. Sequence-specific nuclease technologies are widely used to precisely modify nuclear genomes, but these tools have not been applied to edit organelle genomes because the efficient homologous recombination system in plastids facilitates plastid genome editing. Unlike plastid transformation, successful genetic transformation of higher plant mitochondrial genome transformation was tested in several research group, but not successful to date. However, stepwise progress has been made in modifying mitochondrial genes and their transcripts, thus enabling the study of their functions. Here, we provide an overview of advances in organelle transformation and genome editing for crop improvement, and we discuss the bottlenecks and future development of these technologies.
Collapse
Affiliation(s)
- Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ling Chang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
23
|
Gutmann B, Millman M, Vincis Pereira Sanglard L, Small I, Colas des Francs-Small C. The Pentatricopeptide Repeat Protein MEF100 Is Required for the Editing of Four Mitochondrial Editing Sites in Arabidopsis. Cells 2021; 10:468. [PMID: 33671598 PMCID: PMC7926422 DOI: 10.3390/cells10020468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 11/20/2022] Open
Abstract
In Arabidopsis thaliana there are more than 600 C-to-U RNA editing events in the mitochondria and at least 44 in the chloroplasts. Pentatricopeptide repeat (PPR) proteins provide the specificity for these reactions. They recognize RNA sequences in a partially predictable fashion via key amino acids at the fifth and last position in each PPR motif that bind to individual ribonucleotides. A combined approach of RNA-Seq, mutant complementation, electrophoresis of mitochondrial protein complexes and Western blotting allowed us to show that MEF100, a PPR protein identified in a genetic screen for mutants resistant to an inhibitor of γ -glutamylcysteine synthetase, is required for the editing of nad1-493, nad4-403, nad7-698 and ccmFN2-356 sites in Arabidopsis mitochondria. The absence of editing in mef100 leads to a decrease in mitochondrial Complex I activity, which probably explains the physiological phenotype. Some plants have lost the requirement for MEF100 at one or more of these sites through mutations in the mitochondrial genome. We show that loss of the requirement for MEF100 editing leads to divergence in the MEF100 binding site.
Collapse
Affiliation(s)
| | | | | | | | - Catherine Colas des Francs-Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (B.G.); (M.M.); (L.V.P.S.); (I.S.)
| |
Collapse
|
24
|
Melonek J, Duarte J, Martin J, Beuf L, Murigneux A, Varenne P, Comadran J, Specel S, Levadoux S, Bernath-Levin K, Torney F, Pichon JP, Perez P, Small I. The genetic basis of cytoplasmic male sterility and fertility restoration in wheat. Nat Commun 2021; 12:1036. [PMID: 33589621 PMCID: PMC7884431 DOI: 10.1038/s41467-021-21225-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/15/2021] [Indexed: 01/31/2023] Open
Abstract
Hybrid wheat varieties give higher yields than conventional lines but are difficult to produce due to a lack of effective control of male fertility in breeding lines. One promising system involves the Rf1 and Rf3 genes that restore fertility of wheat plants carrying Triticum timopheevii-type cytoplasmic male sterility (T-CMS). Here, by genetic mapping and comparative sequence analyses, we identify Rf1 and Rf3 candidates that can restore normal pollen production in transgenic wheat plants carrying T-CMS. We show that Rf1 and Rf3 bind to the mitochondrial orf279 transcript and induce cleavage, preventing expression of the CMS trait. The identification of restorer genes in wheat is an important step towards the development of hybrid wheat varieties based on a CMS-Rf system. The characterisation of their mode of action brings insights into the molecular basis of CMS and fertility restoration in plants.
Collapse
Affiliation(s)
- Joanna Melonek
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Jorge Duarte
- Groupe Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Jerome Martin
- Groupe Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Laurent Beuf
- Groupe Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Alain Murigneux
- Groupe Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Pierrick Varenne
- Groupe Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Jordi Comadran
- Groupe Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Sebastien Specel
- Groupe Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Sylvain Levadoux
- Groupe Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Kalia Bernath-Levin
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - François Torney
- Groupe Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | | | - Pascual Perez
- Groupe Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Ian Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
25
|
Liu R, Cao SK, Sayyed A, Yang HH, Zhao J, Wang X, Jia RX, Sun F, Tan BC. The DYW-subgroup pentatricopeptide repeat protein PPR27 interacts with ZmMORF1 to facilitate mitochondrial RNA editing and seed development in maize. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5495-5505. [PMID: 32531050 DOI: 10.1093/jxb/eraa273] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/09/2020] [Indexed: 05/02/2023]
Abstract
C-to-U RNA editing in plant mitochondria requires the participation of many nucleus-encoded factors, most of which are pentatricopeptide repeat (PPR) proteins. There is a large number of PPR proteins and the functions many of them are unknown. Here, we report a mitochondrion-localized DYW-subgroup PPR protein, PPR27, which functions in the editing of multiple mitochondrial transcripts in maize. The ppr27 mutant is completely deficient in C-to-U editing at the ccmFN-1357 and rps3-707 sites, and editing at six other sites is substantially reduced. The lack of editing at ccmFN-1357 causes a deficiency of CcmFN protein. As CcmFN functions in the maturation pathway of cytochrome proteins that are subunits of mitochondrial complex III, its deficiency results in an absence of cytochrome c1 and cytochrome c proteins. Consequently, the assembly of mitochondrial complex III and super-complex I+III2 is decreased, which impairs the electron transport chain and respiration, leading to arrests in embryogenesis and endosperm development in ppr27. In addition, PPR27 was found to physically interact with ZmMORF1, which interacts with ZmMORF8, suggesting that these three proteins may facilitate C-to-U RNA editing via the formation of a complex in maize mitochondria. This RNA editing is essential for complex III assembly and seed development in maize.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Shi-Kai Cao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Aqib Sayyed
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huan-Huan Yang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiao Zhao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ru-Xue Jia
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
26
|
Single and Combined Methods to Specifically or Bulk-Purify RNA-Protein Complexes. Biomolecules 2020; 10:biom10081160. [PMID: 32784769 PMCID: PMC7464009 DOI: 10.3390/biom10081160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
The ribonome interconnects the proteome and the transcriptome. Specific biology is situated at this interface, which can be studied in bulk using omics approaches or specifically by targeting an individual protein or RNA species. In this review, we focus on both RNA- and ribonucleoprotein-(RNP) centric methods. These methods can be used to study the dynamics of the ribonome in response to a stimulus or to identify the proteins that interact with a specific RNA species. The purpose of this review is to provide and discuss an overview of strategies to cross-link RNA to proteins and the currently available RNA- and RNP-centric approaches to study RNPs. We elaborate on some major challenges common to most methods, involving RNP yield, purity and experimental cost. We identify the origin of these difficulties and propose to combine existing approaches to overcome these challenges. The solutions provided build on the recently developed organic phase separation protocols, such as Cross-Linked RNA eXtraction (XRNAX), orthogonal organic phase separation (OOPS) and Phenol-Toluol extraction (PTex).
Collapse
|
27
|
MacIntosh GC, Castandet B. Organellar and Secretory Ribonucleases: Major Players in Plant RNA Homeostasis. PLANT PHYSIOLOGY 2020; 183:1438-1452. [PMID: 32513833 PMCID: PMC7401137 DOI: 10.1104/pp.20.00076] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/31/2020] [Indexed: 05/05/2023]
Abstract
Organellar and secretory RNases, associated with different cellular compartments, are essential to maintain cellular homeostasis during development and in stress responses.
Collapse
Affiliation(s)
- Gustavo C MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011
| | - Benoît Castandet
- Université Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, Centre National de la Recherche Scientifique, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| |
Collapse
|
28
|
Small ID, Schallenberg-Rüdinger M, Takenaka M, Mireau H, Ostersetzer-Biran O. Plant organellar RNA editing: what 30 years of research has revealed. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1040-1056. [PMID: 31630458 DOI: 10.1111/tpj.14578] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 05/21/2023]
Abstract
The central dogma in biology defines the flow of genetic information from DNA to RNA to protein. Accordingly, RNA molecules generally accurately follow the sequences of the genes from which they are transcribed. This rule is transgressed by RNA editing, which creates RNA products that differ from their DNA templates. Analyses of the RNA landscapes of terrestrial plants have indicated that RNA editing (in the form of C-U base transitions) is highly prevalent within organelles (that is, mitochondria and chloroplasts). Numerous C→U conversions (and in some plants also U→C) alter the coding sequences of many of the organellar transcripts and can also produce translatable mRNAs by creating AUG start sites or eliminating premature stop codons, or affect the RNA structure, influence splicing and alter the stability of RNAs. RNA-binding proteins are at the heart of post-transcriptional RNA expression. The C-to-U RNA editing process in plant mitochondria involves numerous nuclear-encoded factors, many of which have been identified as pentatricopeptide repeat (PPR) proteins that target editing sites in a sequence-specific manner. In this review we report on major discoveries on RNA editing in plant organelles, since it was first documented 30 years ago.
Collapse
Affiliation(s)
- Ian D Small
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abt. Molekulare Evolution, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Mizuki Takenaka
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
29
|
Gutmann B, Royan S, Schallenberg-Rüdinger M, Lenz H, Castleden IR, McDowell R, Vacher MA, Tonti-Filippini J, Bond CS, Knoop V, Small ID. The Expansion and Diversification of Pentatricopeptide Repeat RNA-Editing Factors in Plants. MOLECULAR PLANT 2020; 13:215-230. [PMID: 31760160 DOI: 10.1016/j.molp.2019.11.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/10/2019] [Accepted: 11/11/2019] [Indexed: 05/08/2023]
Abstract
The RNA-binding pentatricopeptide repeat (PPR) family comprises hundreds to thousands of genes in most plants, but only a few dozen in algae, indicating massive gene expansions during land plant evolution. The nature and timing of these expansions has not been well defined due to the sparse sequence data available from early-diverging land plant lineages. In this study, we exploit the comprehensive OneKP datasets of over 1000 transcriptomes from diverse plants and algae toward establishing a clear picture of the evolution of this massive gene family, focusing on the proteins typically associated with RNA editing, which show the most spectacular variation in numbers and domain composition across the plant kingdom. We characterize over 2 250 000 PPR motifs in over 400 000 proteins. In lycophytes, polypod ferns, and hornworts, nearly 10% of expressed protein-coding genes encode putative PPR editing factors, whereas they are absent from algae and complex-thalloid liverworts. We show that rather than a single expansion, most land plant lineages with high numbers of editing factors have continued to generate novel sequence diversity. We identify sequence variations that imply functional differences between PPR proteins in seed plants versus non-seed plants and variations we propose to be linked to seed-plant-specific editing co-factors. Finally, using the sequence variations across the datasets, we develop a structural model of the catalytic DYW domain associated with C-to-U editing and identify a clade of unique DYW variants that are strong candidates as U-to-C RNA-editing factors, given their phylogenetic distribution and sequence characteristics.
Collapse
Affiliation(s)
- Bernard Gutmann
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Santana Royan
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Mareike Schallenberg-Rüdinger
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Henning Lenz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ian R Castleden
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Rose McDowell
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Michael A Vacher
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Julian Tonti-Filippini
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Ian D Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, Perth 6009, WA, Australia; School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, WA, Australia.
| |
Collapse
|
30
|
Yan J, Yao Y, Hong S, Yang Y, Shen C, Zhang Q, Zhang D, Zou T, Yin P. Delineation of pentatricopeptide repeat codes for target RNA prediction. Nucleic Acids Res 2019; 47:3728-3738. [PMID: 30753696 PMCID: PMC6468296 DOI: 10.1093/nar/gkz075] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/18/2022] Open
Abstract
Members of the pentatricopeptide repeat (PPR) protein family are sequence-specific RNA-binding proteins that play crucial roles in organelle RNA metabolism. Each PPR protein consists of a tandem array of PPR motifs, each of which aligns to one nucleotide of the RNA target. The di-residues in the PPR motif, which are referred to as the PPR codes, determine nucleotide specificity. Numerous PPR codes are distributed among the vast number of PPR motifs, but the correlation between PPR codes and RNA bases is poorly understood, which hinders target RNA prediction and functional investigation of PPR proteins. To address this issue, we developed a modular assembly method for high-throughput construction of designer PPRs, and by using this method, 62 designer PPR proteins containing various PPR codes were assembled. Then, the correlation between these PPR codes and RNA bases was systematically explored and delineated. Based on this correlation, the web server PPRCODE (http://yinlab.hzau.edu.cn/pprcode) was developed. Our study will not only serve as a platform for facilitating target RNA prediction and functional investigation of the large number of PPR family proteins but also provide an alternative strategy for the assembly of custom PPRs that can potentially be used for plant organelle RNA manipulation.
Collapse
Affiliation(s)
- Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yinying Yao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Sixing Hong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Yang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Qunxia Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingting Zou
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
McDermott JJ, Watkins KP, Williams-Carrier R, Barkan A. Ribonucleoprotein Capture by in Vivo Expression of a Designer Pentatricopeptide Repeat Protein in Arabidopsis. THE PLANT CELL 2019; 31:1723-1733. [PMID: 31123048 PMCID: PMC6713294 DOI: 10.1105/tpc.19.00177] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/01/2019] [Accepted: 05/14/2019] [Indexed: 05/15/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins bind RNA via a mechanism that facilitates the customization of sequence specificity. However, natural PPR proteins have irregular features that limit the degree to which their specificity can be predicted and customized. We demonstrate here that artificial PPR proteins built from consensus PPR motifs selectively bind the intended RNA in vivo, and we use this property to develop a new tool for ribonucleoprotein characterization. We show by RNA coimmunoprecipitation sequencing (RIP-seq) that artificial PPR proteins designed to bind the Arabidopsis (Arabidopsis thaliana) chloroplast psbA mRNA bind with high specificity to psbA mRNA in vivo. Analysis of coimmunoprecipitating proteins by mass spectrometry showed the psbA translational activator HCF173 and two RNA binding proteins of unknown function (CP33C and SRRP1) to be highly enriched. RIP-seq revealed that these proteins are bound primarily to psbA RNA in vivo, and precise mapping of the HCF173 and CP33C binding sites placed them in different locations on psbA mRNA. These results demonstrate that artificial PPR proteins can be tailored to bind specific endogenous RNAs in vivo, add to the toolkit for characterizing native ribonucleoproteins, and open the door to other applications that rely on the ability to target a protein to a specified RNA sequence.
Collapse
Affiliation(s)
- James J McDermott
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Kenneth P Watkins
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
32
|
Zhang Y, Lu C. The Enigmatic Roles of PPR-SMR Proteins in Plants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900361. [PMID: 31380188 PMCID: PMC6662315 DOI: 10.1002/advs.201900361] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/03/2019] [Indexed: 05/21/2023]
Abstract
The pentatricopeptide repeat (PPR) protein family, with more than 400 members, is one of the largest and most diverse protein families in land plants. A small subset of PPR proteins contain a C-terminal small MutS-related (SMR) domain. Although there are relatively few PPR-SMR proteins, they play essential roles in embryo development, chloroplast biogenesis and gene expression, and plastid-to-nucleus retrograde signaling. Here, recent advances in understanding the roles of PPR-SMR proteins and the SMR domain based on a combination of genetic, biochemical, and physiological analyses are described. In addition, the potential of the PPR-SMR protein SOT1 to serve as a tool for RNA manipulation is highlighted.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandong271018P. R. China
| | - Congming Lu
- State Key Laboratory of Crop BiologyCollege of Life SciencesShandong Agricultural UniversityTaianShandong271018P. R. China
| |
Collapse
|
33
|
Kazama T, Okuno M, Watari Y, Yanase S, Koizuka C, Tsuruta Y, Sugaya H, Toyoda A, Itoh T, Tsutsumi N, Toriyama K, Koizuka N, Arimura SI. Curing cytoplasmic male sterility via TALEN-mediated mitochondrial genome editing. NATURE PLANTS 2019; 5:722-730. [PMID: 31285556 DOI: 10.1038/s41477-019-0459-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 05/23/2019] [Indexed: 05/22/2023]
Abstract
Sequence-specific nucleases are commonly used to modify the nuclear genome of plants. However, targeted modification of the mitochondrial genome of land plants has not yet been achieved. In plants, a type of male sterility called cytoplasmic male sterility (CMS) has been attributed to certain mitochondrial genes, but none of these genes has been validated by direct mitochondrial gene-targeted modification. Here, we knocked out CMS-associated genes (orf79 and orf125) of CMS varieties of rice and rapeseed, respectively, using transcription activator-like effector nucleases (TALENs) with mitochondria localization signals (mitoTALENs). We demonstrate that knocking out these genes cures male sterility, strongly suggesting that these genes are causes of CMS. Sequencing revealed that double-strand breaks induced by mitoTALENs were repaired by homologous recombination, and that during this process, the target genes and surrounding sequences were deleted. Our results show that mitoTALENs can be used to stably and heritably modify the mitochondrial genome in plants.
Collapse
Affiliation(s)
- Tomohiko Kazama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
| | - Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Yuta Watari
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shungo Yanase
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Chie Koizuka
- College of Agriculture, Tamagawa University, Tokyo, Japan
| | - Yu Tsuruta
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hajime Sugaya
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Nobuhiro Tsutsumi
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kinya Toriyama
- Laboratory of Environmental Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Nobuya Koizuka
- College of Agriculture, Tamagawa University, Tokyo, Japan.
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, Japan.
| |
Collapse
|
34
|
Rojas M, Yu Q, Williams-Carrier R, Maliga P, Barkan A. Engineered PPR proteins as inducible switches to activate the expression of chloroplast transgenes. NATURE PLANTS 2019; 5:505-511. [PMID: 31036912 DOI: 10.1038/s41477-019-0412-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/22/2019] [Indexed: 05/08/2023]
Abstract
The engineering of plant genomes presents exciting opportunities to modify agronomic traits and to produce high-value products in plants. Expression of foreign proteins from transgenes in the chloroplast genome offers advantages that include the capacity for prodigious protein output, the lack of transgene silencing and the ability to express multicomponent pathways from polycistronic mRNA. However, there remains a need for robust methods to regulate plastid transgene expression. We designed orthogonal activators that boost the expression of chloroplast transgenes harbouring cognate cis-elements. Our system exploits the programmable RNA sequence specificity of pentatricopeptide repeat proteins and their native functions as activators of chloroplast gene expression. When expressed from nuclear transgenes, the engineered proteins stimulate the expression of plastid transgenes by up to ~40-fold, with maximal protein abundance approaching that of Rubisco. This strategy provides a means to regulate and optimize the expression of foreign genes in chloroplasts and to avoid deleterious effects of their products on plant growth.
Collapse
Affiliation(s)
- Margarita Rojas
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Qiguo Yu
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | | | - Pal Maliga
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ, USA
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.
| |
Collapse
|