1
|
Nissen C, Lovenduski NS, Brooks CM, Hoppema M, Timmermann R, Hauck J. Severe 21st-century ocean acidification in Antarctic Marine Protected Areas. Nat Commun 2024; 15:259. [PMID: 38177177 PMCID: PMC10766974 DOI: 10.1038/s41467-023-44438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Antarctic coastal waters are home to several established or proposed Marine Protected Areas (MPAs) supporting exceptional biodiversity. Despite being threatened by anthropogenic climate change, uncertainties remain surrounding the future ocean acidification (OA) of these waters. Here we present 21st-century projections of OA in Antarctic MPAs under four emission scenarios using a high-resolution ocean-sea ice-biogeochemistry model with realistic ice-shelf geometry. By 2100, we project pH declines of up to 0.36 (total scale) for the top 200 m. Vigorous vertical mixing of anthropogenic carbon produces severe OA throughout the water column in coastal waters of proposed and existing MPAs. Consequently, end-of-century aragonite undersaturation is ubiquitous under the three highest emission scenarios. Given the cumulative threat to marine ecosystems by environmental change and activities such as fishing, our findings call for strong emission-mitigation efforts and further management strategies to reduce pressures on ecosystems, such as the continuation and expansion of Antarctic MPAs.
Collapse
Affiliation(s)
- Cara Nissen
- Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA.
- Alfred Wegener Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany.
| | - Nicole S Lovenduski
- Department of Atmospheric and Oceanic Sciences and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Cassandra M Brooks
- Department of Environmental Studies and Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Mario Hoppema
- Alfred Wegener Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Ralph Timmermann
- Alfred Wegener Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| | - Judith Hauck
- Alfred Wegener Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
| |
Collapse
|
2
|
Microplastic Interactions and Possible Combined Biological Effects in Antarctic Marine Ecosystems. Animals (Basel) 2022; 13:ani13010162. [PMID: 36611770 PMCID: PMC9817852 DOI: 10.3390/ani13010162] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Antarctica and the Southern Ocean are the most remote regions on Earth, and their quite pristine environmental conditions are increasingly threatened by local scientific, tourism and fishing activities and long-range transport of persistent anthropogenic contaminants from lower latitudes. Plastic debris has become one of the most pervasive and ubiquitous synthetic wastes in the global environment, and even at some coastal Antarctic sites it is the most common and enduring evidence of past and recent human activities. Despite the growing scientific interest in the occurrence of microplastics (MPs) in the Antarctic environment, the lack of standardized methodologies for the collection, analysis and assessment of sample contamination in the field and in the lab does not allow us to establish their bioavailability and potential impact. Overall, most of the Southern Ocean appears to be little-affected by plastic contamination, with the exception of some coastal marine ecosystems impacted by wastewater from scientific stations and tourist vessels or by local fishing activities. Microplastics have been detected in sediments, benthic organisms, Antarctic krill and fish, but there is no clear evidence of their transfer to seabirds and marine mammals. Therefore, we suggest directing future research towards standardization of methodologies, focusing attention on nanoplastics (which probably represent the greatest biological risks) and considering the interactions of MPs with macro- and microalgae (especially sea-ice algae) and the formation of epiplastic communities. In coastal ecosystems directly impacted by human activities, the combined exposure to paint chips, metals, persistent organic pollutants (POPs), contaminants of emerging interest (CEI) and pathogenic microorganisms represents a potential danger for marine organisms. Moreover, the Southern Ocean is very sensitive to water acidification and has shown a remarkable decrease in sea-ice formation in recent years. These climate-related stresses could reduce the resilience of Antarctic marine organisms, increasing the impact of anthropogenic contaminants and pathogenic microorganisms.
Collapse
|
3
|
Development of a protein concentrate for human consumption by direct enzymatic hydrolysis of antarctic krill (Euphausia superba). Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
4
|
Macro- and Microplastics in the Antarctic Environment: Ongoing Assessment and Perspectives. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070093] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The number of scientists and tourists visiting Antarctica is on the rise and, despite the management framework for environmental protection, some coastal areas, particularly in the Antarctic Peninsula region, are affected by plastic contamination. The few data available on the occurrence of microplastics (<5 mm) are difficult to compare, due to the different methodologies used in monitoring studies. However, indications are emerging to guide future research and to implement environmental protocols. In the surface and subsurface waters of the Southern Ocean, plastic debris >300 µm appears to be scarce and far less abundant than paint chips released from research vessels. Yet, near some coastal scientific stations, the fragmentation and degradation of larger plastic items, as well as microbeads and microfibers released into wastewater from personal care products and laundry, could potentially affect marine organisms. Some studies indicate that, through long-range atmospheric transport, plastic fibers produced on other continents can be deposited in Antarctica. Drifting plastic debris can also cross the Polar Front, with the potential to carry alien fouling organisms into the Southern Ocean. Sea ice dynamics appear to favor the uptake of microplastics by ice algae and Antarctic krill, the key species in the Antarctic marine food web. Euphausia superba apparently has the ability to fragment and expel ingested plastic particles at the nanoscale. However, most Antarctic organisms are endemic species, with unique ecophysiological adaptations to extreme environmental conditions and are likely highly sensitive to cumulative stresses caused by climate change, microplastics and other anthropogenic disturbances. Although there is limited evidence to date that micro- and nanoplastics have direct biological effects, our review aims at raising awareness of the problem and, in order to assess the real potential impact of microplastics in Antarctica, underlines the urgency to fill the methodological gaps for their detection in all environmental matrices, and to equip scientific stations and ships with adequate wastewater treatment plants to reduce the release of microfibers.
Collapse
|
5
|
Johnston NM, Murphy EJ, Atkinson A, Constable AJ, Cotté C, Cox M, Daly KL, Driscoll R, Flores H, Halfter S, Henschke N, Hill SL, Höfer J, Hunt BPV, Kawaguchi S, Lindsay D, Liszka C, Loeb V, Manno C, Meyer B, Pakhomov EA, Pinkerton MH, Reiss CS, Richerson K, Jr. WOS, Steinberg DK, Swadling KM, Tarling GA, Thorpe SE, Veytia D, Ward P, Weldrick CK, Yang G. Status, Change, and Futures of Zooplankton in the Southern Ocean. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.624692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In the Southern Ocean, several zooplankton taxonomic groups, euphausiids, copepods, salps and pteropods, are notable because of their biomass and abundance and their roles in maintaining food webs and ecosystem structure and function, including the provision of globally important ecosystem services. These groups are consumers of microbes, primary and secondary producers, and are prey for fishes, cephalopods, seabirds, and marine mammals. In providing the link between microbes, primary production, and higher trophic levels these taxa influence energy flows, biological production and biomass, biogeochemical cycles, carbon flux and food web interactions thereby modulating the structure and functioning of ecosystems. Additionally, Antarctic krill (Euphausia superba) and various fish species are harvested by international fisheries. Global and local drivers of change are expected to affect the dynamics of key zooplankton species, which may have potentially profound and wide-ranging implications for Southern Ocean ecosystems and the services they provide. Here we assess the current understanding of the dominant metazoan zooplankton within the Southern Ocean, including Antarctic krill and other key euphausiid, copepod, salp and pteropod species. We provide a systematic overview of observed and potential future responses of these taxa to a changing Southern Ocean and the functional relationships by which drivers may impact them. To support future ecosystem assessments and conservation and management strategies, we also identify priorities for Southern Ocean zooplankton research.
Collapse
|
6
|
Gutt J, Isla E, Xavier JC, Adams BJ, Ahn IY, Cheng CHC, Colesie C, Cummings VJ, di Prisco G, Griffiths H, Hawes I, Hogg I, McIntyre T, Meiners KM, Pearce DA, Peck L, Piepenburg D, Reisinger RR, Saba GK, Schloss IR, Signori CN, Smith CR, Vacchi M, Verde C, Wall DH. Antarctic ecosystems in transition - life between stresses and opportunities. Biol Rev Camb Philos Soc 2020; 96:798-821. [PMID: 33354897 DOI: 10.1111/brv.12679] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Enrique Isla
- Institute of Marine Sciences-CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Coimbra, Portugal.,British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Byron J Adams
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, U.S.A
| | - In-Young Ahn
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - C-H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, IL, U.S.A
| | - Claudia Colesie
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF, U.K
| | - Vonda J Cummings
- National Institute of Water and Atmosphere Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Huw Griffiths
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3100, New Zealand
| | - Ian Hogg
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.,Canadian High Antarctic Research Station, Polar Knowledge Canada, PO Box 2150, Cambridge Bay, NU, X0B 0C0, Canada
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Klaus M Meiners
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, and Australian Antarctic Program Partnership, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - David A Pearce
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle upon Tyne, NE1 8ST, U.K
| | - Lloyd Peck
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Ryan R Reisinger
- Centre d'Etudes Biologique de Chizé, UMR 7372 du Centre National de la Recherche Scientifique - La Rochelle Université, Villiers-en-Bois, 79360, France
| | - Grace K Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, U.S.A
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina
| | - Camila N Signori
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-900, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, U.S.A
| | - Marino Vacchi
- Institute for the Study of the Anthropic Impacts and the Sustainability of the Marine Environment (IAS), National Research Council of Italy (CNR), Via de Marini 6, Genoa, 16149, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, U.S.A
| |
Collapse
|
7
|
Riquelme-Bugueño R, Pérez-Santos I, Alegría N, Vargas CA, Urbina MA, Escribano R. Diel vertical migration into anoxic and high-pCO 2 waters: acoustic and net-based krill observations in the Humboldt Current. Sci Rep 2020; 10:17181. [PMID: 33057075 PMCID: PMC7560619 DOI: 10.1038/s41598-020-73702-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 11/29/2022] Open
Abstract
A select group of marine organisms can enter the Oxygen Minimum Zones (OMZs) and even anoxic waters, while performing diel vertical migration (DVM). DVM of the euphausiid Euphausia eximia off northern Chile in the spring of 2015 was documented based on acoustic measurements using an echo sounder along with net samplings. Dissolved oxygen (DO) concentrations were obtained using a vertical profiler, and water samples were collected to obtain in situ nitrite (NO2−) concentrations as well as pHT, total alkalinity (AT), and therefore carbon dioxide partial pressure (pCO2) was estimated. Krill were found to migrate up to the surface (0–50 m) during the night and returned to ca. 200–300 m depth during the day, spending between 11 and 14 h at these layers. At the surface, DO and NO2− concentrations were 208 and 0.14 μM respectively, while pHT was 8.04 and 405 μatm pCO2. In contrast, at the deeper layers (200–300 m), DO and NO2− were < 3 and 6.3 μM respectively, with pHT 7.53 and 1490 μatm pCO2. The pHT and high pCO2 values at depths represent the conditions predicted for open ocean waters in a worst-case global warming scenario by 2150. The acoustic scatter suggested that > 60% of the krill swarms enter the OMZ and anoxic waters during the daytime. These frequent migrations suggest that krill can tolerate such extreme conditions associated with anoxic and high-pCO2 waters. The inferences drawn from the observation of these migrations might have strong implications for the current oceanic carbon pump models, highlighting the need for understanding the molecular and physiological adaptations allowing these migrations.
Collapse
Affiliation(s)
- Ramiro Riquelme-Bugueño
- Departamento de Zoología, Facultad de Ciencias Naturales Y Oceanográficas, Universidad de Concepción, Concepción, Chile. .,Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile.
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile.,COPAS Sur-Austral, Universidad de Concepción, Concepción, Chile
| | | | - Cristian A Vargas
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile.,Coastal Ecosystems and Global Environmental Change Lab (ECCA Lab), Department of Aquatic Systems, Faculty of Environmental Sciences and Center for the Study of Multiple-Drivers On Marine Socio-Ecological Systems (MUSELS), Universidad de Concepción, Concepción, Chile
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales Y Oceanográficas, Universidad de Concepción, Concepción, Chile.,Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| | - Rubén Escribano
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile.,Departamento de Oceanografía, Facultad de Ciencias Naturales Y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
8
|
Hancock AM, King CK, Stark JS, McMinn A, Davidson AT. Effects of ocean acidification on Antarctic marine organisms: A meta-analysis. Ecol Evol 2020; 10:4495-4514. [PMID: 32489613 PMCID: PMC7246202 DOI: 10.1002/ece3.6205] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/27/2019] [Accepted: 01/16/2020] [Indexed: 12/20/2022] Open
Abstract
Southern Ocean waters are among the most vulnerable to ocean acidification. The projected increase in the CO2 level will cause changes in carbonate chemistry that are likely to be damaging to organisms inhabiting these waters. A meta-analysis was undertaken to examine the vulnerability of Antarctic marine biota occupying waters south of 60°S to ocean acidification. This meta-analysis showed that ocean acidification negatively affects autotrophic organisms, mainly phytoplankton, at CO2 levels above 1,000 μatm and invertebrates above 1,500 μatm, but positively affects bacterial abundance. The sensitivity of phytoplankton to ocean acidification was influenced by the experimental procedure used. Natural, mixed communities were more sensitive than single species in culture and showed a decline in chlorophyll a concentration, productivity, and photosynthetic health, as well as a shift in community composition at CO2 levels above 1,000 μatm. Invertebrates showed reduced fertilization rates and increased occurrence of larval abnormalities, as well as decreased calcification rates and increased shell dissolution with any increase in CO2 level above 1,500 μatm. Assessment of the vulnerability of fish and macroalgae to ocean acidification was limited by the number of studies available. Overall, this analysis indicates that many marine organisms in the Southern Ocean are likely to be susceptible to ocean acidification and thereby likely to change their contribution to ecosystem services in the future. Further studies are required to address the poor spatial coverage, lack of community or ecosystem-level studies, and the largely unknown potential for organisms to acclimate and/or adapt to the changing conditions.
Collapse
Affiliation(s)
- Alyce M. Hancock
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaBattery PointTASAustralia
- Antarctic Gateway PartnershipBattery PointTASAustralia
- Antarctic Climate & Ecosystems Cooperative Research CentreBattery PointTASAustralia
| | | | | | - Andrew McMinn
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaBattery PointTASAustralia
- Antarctic Gateway PartnershipBattery PointTASAustralia
- Antarctic Climate & Ecosystems Cooperative Research CentreBattery PointTASAustralia
| | - Andrew T. Davidson
- Antarctic Climate & Ecosystems Cooperative Research CentreBattery PointTASAustralia
- Australian Antarctic DivisionKingstonTASAustralia
| |
Collapse
|
9
|
Hellessey N, Johnson R, Ericson JA, Nichols PD, Kawaguchi S, Nicol S, Hoem N, Virtue P. Antarctic Krill Lipid and Fatty acid Content Variability is Associated to Satellite Derived Chlorophyll a and Sea Surface Temperatures. Sci Rep 2020; 10:6060. [PMID: 32269236 PMCID: PMC7142126 DOI: 10.1038/s41598-020-62800-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 03/19/2020] [Indexed: 11/23/2022] Open
Abstract
Antarctic krill (Euphausia superba) are a key component of the Antarctic food web with considerable lipid reserves that are vital for their health and higher predator survival. Krill lipids are primarily derived from their diet of plankton, in particular diatoms and flagellates. Few attempts have been made to link the spatial and temporal variations in krill lipids to those in their food supply. Remotely-sensed environmental parameters provide large-scale information on the potential availability of krill food, although relating this to physiological and biochemical differences has only been performed on small scales and with limited samples. Our study utilised remotely-sensed data (chlorophyll a and sea surface temperature) coupled with krill lipid data obtained from 3 years of fishery-derived samples. We examined within and between year variation of trends in both the environment and krill biochemistry data. Chlorophyll a levels were positively related to krill lipid levels, particularly triacylglycerol. Plankton fatty acid biomarkers analysed in krill (such as n-3 polyunsaturated fatty acids) increased with decreasing sea surface temperature and increasing chlorophyll a levels. Our study demonstrates the utility of combining remote-sensing and biochemical data in examining biological and physiological relationships between Antarctic krill and the Southern Ocean environment.
Collapse
Affiliation(s)
- Nicole Hellessey
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia. .,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia. .,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia. .,School of Biological Sciences, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia, 30332, United States of America.
| | - Robert Johnson
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - Jessica A Ericson
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Cawthron Institute, Private Bag 2, Nelson, 7041, New Zealand
| | - Peter D Nichols
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - So Kawaguchi
- Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania, 7050, Australia
| | - Stephen Nicol
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| | - Nils Hoem
- Aker BioMarine Antarctic AS, Oksenøyveien 10, P.O. Box 496, NO-1327, Lysaker, Norway
| | - Patti Virtue
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,CSIRO Oceans and Atmosphere, Castray Esplanade, Battery Point, Tasmania, 7004, Australia.,Antarctic Climate and Ecosystems Cooperative Research Centre, 20 Castray Esplanade, Battery Point, Tasmania, 7004, Australia
| |
Collapse
|
10
|
Cavan EL, Belcher A, Atkinson A, Hill SL, Kawaguchi S, McCormack S, Meyer B, Nicol S, Ratnarajah L, Schmidt K, Steinberg DK, Tarling GA, Boyd PW. The importance of Antarctic krill in biogeochemical cycles. Nat Commun 2019; 10:4742. [PMID: 31628346 PMCID: PMC6800442 DOI: 10.1038/s41467-019-12668-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/25/2019] [Indexed: 02/02/2023] Open
Abstract
Antarctic krill (Euphausia superba) are swarming, oceanic crustaceans, up to two inches long, and best known as prey for whales and penguins - but they have another important role. With their large size, high biomass and daily vertical migrations they transport and transform essential nutrients, stimulate primary productivity and influence the carbon sink. Antarctic krill are also fished by the Southern Ocean's largest fishery. Yet how krill fishing impacts nutrient fertilisation and the carbon sink in the Southern Ocean is poorly understood. Our synthesis shows fishery management should consider the influential biogeochemical role of both adult and larval Antarctic krill.
Collapse
Affiliation(s)
- E L Cavan
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia.
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.
| | - A Belcher
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
| | - A Atkinson
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK
| | - S L Hill
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
| | - S Kawaguchi
- Australian Antarctic Division, Kingston, TAS, Australia
| | - S McCormack
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart, TAS, Australia
| | - B Meyer
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26111, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Ammerländer Heerstrasse 231, Oldenburg, 26129, Germany
| | - S Nicol
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - L Ratnarajah
- Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - K Schmidt
- School of Geography, Earth and Environmental Science, University of Plymouth, Plymouth, UK
| | - D K Steinberg
- Virginia Institute of Marine Science, College of William & Mary, Williamsburg, VA, USA
| | - G A Tarling
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK
| | - P W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
11
|
Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill. Sci Rep 2019; 9:12375. [PMID: 31451724 PMCID: PMC6710253 DOI: 10.1038/s41598-019-48665-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/09/2019] [Indexed: 12/25/2022] Open
Abstract
Euphausia superba (Antarctic krill) is a keystone species in the Southern Ocean, but little is known about how it will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), alters the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 μatm), elevated pCO2 levels mimicking near-future ocean acidification (1000, 1500 and 2000 μatm) and an extreme pCO2 level (4000 μatm). Total lipid mass (mg g-1 DM) of krill was unaffected by near-future pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 μatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of 18:2n-6 (up to 1.2% increase), 20:4n-6 (up to 0.8% increase), lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios, and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.
Collapse
|