1
|
Gnugnoli M, Rinaldi C, Casari E, Pizzul P, Bonetti D, Longhese MP. Proteasome-mediated degradation of long-range nucleases negatively regulates resection of DNA double-strand breaks. iScience 2024; 27:110373. [PMID: 39071887 PMCID: PMC11277358 DOI: 10.1016/j.isci.2024.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Homologous recombination is initiated by the nucleolytic degradation (resection) of DNA double-strand breaks (DSBs). DSB resection is a two-step process. In the short-range step, the MRX (Mre11-Rad50-Xrs2) complex, together with Sae2, incises the 5'-terminated strand at the DSB end and resects back toward the DNA end. Then, the long-range resection nucleases Exo1 and Dna2 further elongate the resected DNA tracts. We found that mutations lowering proteasome functionality bypass the need for Sae2 in DSB resection. In particular, the dysfunction of the proteasome subunit Rpn11 leads to hyper-resection and increases the levels of both Exo1 and Dna2 to such an extent that it allows the bypass of the requirement for either Exo1 or Dna2, but not for both. These observations, along with the finding that Exo1 and Dna2 are ubiquitylated, indicate a role of the proteasome in restraining DSB resection by negatively controlling the abundance of the long-range resection nucleases.
Collapse
Affiliation(s)
- Marco Gnugnoli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Carlo Rinaldi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Paolo Pizzul
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Diego Bonetti
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, 20126 Milano, Italy
| |
Collapse
|
2
|
da Silva ANR, Pereira GRC, Bonet LFS, Outeiro TF, De Mesquita JF. In silico analysis of alpha-synuclein protein variants and posttranslational modifications related to Parkinson's disease. J Cell Biochem 2024; 125:e30523. [PMID: 38239037 DOI: 10.1002/jcb.30523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 03/12/2024]
Abstract
Parkinson's disease (PD) is among the most prevalent neurodegenerative disorders, affecting over 10 million people worldwide. The protein encoded by the SNCA gene, alpha-synuclein (ASYN), is the major component of Lewy body (LB) aggregates, a histopathological hallmark of PD. Mutations and posttranslational modifications (PTMs) in ASYN are known to influence protein aggregation and LB formation, possibly playing a crucial role in PD pathogenesis. In this work, we applied computational methods to characterize the effects of missense mutations and PTMs on the structure and function of ASYN. Missense mutations in ASYN were compiled from the literature/databases and underwent a comprehensive predictive analysis. Phosphorylation and SUMOylation sites of ASYN were retrieved from databases and predicted by algorithms. ConSurf was used to estimate the evolutionary conservation of ASYN amino acids. Molecular dynamics (MD) simulations of ASYN wild-type and variants A30G, A30P, A53T, and G51D were performed using the GROMACS package. Seventy-seven missense mutations in ASYN were compiled. Although most mutations were not predicted to affect ASYN stability, aggregation propensity, amyloid formation, and chaperone binding, the analyzed mutations received relatively high rates of deleterious predictions and predominantly occurred at evolutionarily conserved sites within the protein. Moreover, our predictive analyses suggested that the following mutations may be possibly harmful to ASYN and, consequently, potential targets for future investigation: K6N, T22I, K34E, G36R, G36S, V37F, L38P, G41D, and K102E. The MD analyses pointed to remarkable flexibility and essential dynamics alterations at nearly all domains of the studied variants, which could lead to impaired contact between NAC and the C-terminal domain triggering protein aggregation. These alterations may have functional implications for ASYN and provide important insight into the molecular mechanism of PD, supporting the design of future biomedical research and improvements in existing therapies for the disease.
Collapse
Affiliation(s)
- Aloma N R da Silva
- Bioinformatics and Computational Biology Laboratory, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriel R C Pereira
- Bioinformatics and Computational Biology Laboratory, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Felippe Sarmento Bonet
- Bioinformatics and Computational Biology Laboratory, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Joelma F De Mesquita
- Bioinformatics and Computational Biology Laboratory, Department of Genetics and Molecular Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Zhang T, Yang H, Zhou Z, Bai Y, Wang J, Wang W. Crosstalk between SUMOylation and ubiquitylation controls DNA end resection by maintaining MRE11 homeostasis on chromatin. Nat Commun 2022; 13:5133. [PMID: 36050397 PMCID: PMC9436968 DOI: 10.1038/s41467-022-32920-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
DNA end resection is delicately regulated through various types of post-translational modifications to initiate homologous recombination, but the involvement of SUMOylation in this process remains incompletely understood. Here, we show that MRE11 requires SUMOylation to shield it from ubiquitin-mediated degradation when resecting damaged chromatin. Upon DSB induction, PIAS1 promotes MRE11 SUMOylation on chromatin to initiate DNA end resection. Then, MRE11 is deSUMOylated by SENP3 mainly after it has moved away from DSB sites. SENP3 deficiency results in MRE11 degradation failure and accumulation on chromatin, causing genome instability. We further show that cancer-related MRE11 mutants with impaired SUMOylation exhibit compromised DNA repair ability. Thus, we demonstrate that MRE11 SUMOylation in coordination with ubiquitylation is dynamically controlled by PIAS1 and SENP3 to facilitate DNA end resection and maintain genome stability. DNA end resection initiating DNA repair by homologous recombination needs to be delicately regulated. This study shows the interplay between SUMOylation and ubiquitylation maintains MRE11 homeostasis on chromatin, thus facilitating genome stability.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Han Yang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Zenan Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yongtai Bai
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
4
|
Wang M, Wei R, Li G, Bi HL, Jia Z, Zhang M, Pang M, Li X, Ma L, Tang Y. SUMOylation of SYNJ2BP-COX16 promotes breast cancer progression through DRP1-mediated mitochondrial fission. Cancer Lett 2022; 547:215871. [PMID: 35998797 DOI: 10.1016/j.canlet.2022.215871] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Treatments targeting oncogenic fusion proteins are notable examples of successful drug development. Abnormal splicing of genes resulting in fusion proteins is a critical driver of various tumors, but the underlying mechanism remains poorly understood. Here, we show that SUMOylation of the fusion protein Synaptojanin 2 binding protein-Cytochrome-c oxidase 16 (SYNJ2BP-COX16) at K107 induces mitochondrial fission in breast cancer and that the K107 site regulates SYNJ2BP-COX16 mitochondrial subcellular localization. Compared with a non-SUMOylated K107R mutant, wild-type SYNJ2BP-COX16 contributed to breast cancer cell proliferation and metastasis in vivo and in vitro by increasing adenosine triphosphate (ATP) production and cytochrome-c oxidase (COX) activity. SUMOylated SYNJ2BP-COX16 recruits dynamin-related protein 1 (DRP1) to the mitochondria to promote ubiquitin-conjugating enzyme 9 (UBC9) binding to DRP1, enhance SUMOylation of DRP1 and phosphorylation of DRP1 at S616, and then induce mitochondrial fission. Moreover, Mdivi-1, an inhibitor of DRP1 phosphorylation, decreased the localization of DRP1 in mitochondria, and prevents SYNJ2BP-COX16 induced mitochondrial fission, cell proliferation and metastasis. Based on these data, SYNJ2BP-COX16 promotes breast cancer progression through the phosphorylation of DRP1 and subsequent induction of mitochondrial fission, indicating that SUMOylation at the K107 residue of SYNJ2BP-COX16 is a novel potential treatment target for breast cancer.
Collapse
Affiliation(s)
- Miao Wang
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Ranru Wei
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Guohui Li
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China; College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Hai-Lian Bi
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116024, China.
| | - Zhaojun Jia
- College of New Materials and Chemical Engineering, Beijing Key Laboratory of Enze Biomass Fine Chemicals, Beijing Institute of Petrochemical Technology, Beijing, China.
| | - Mengjie Zhang
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Mengyao Pang
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Xiaona Li
- School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Liming Ma
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| | - Ying Tang
- School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, Dalian, Liaoning Province, 116024, China.
| |
Collapse
|
5
|
Singhal J, Madan E, Chaurasiya A, Srivastava P, Singh N, Kaushik S, Kahlon AK, Maurya MK, Marothia M, Joshi P, Ranganathan A, Singh S. Host SUMOylation Pathway Negatively Regulates Protective Immune Responses and Promotes Leishmania donovani Survival. Front Cell Infect Microbiol 2022; 12:878136. [PMID: 35734580 PMCID: PMC9207379 DOI: 10.3389/fcimb.2022.878136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
SUMOylation is one of the post-translational modifications that have recently been described as a key regulator of various cellular, nuclear, metabolic, and immunological processes. The process of SUMOylation involves the modification of one or more lysine residues of target proteins by conjugation of a ubiquitin-like, small polypeptide known as SUMO for their degradation, stability, transcriptional regulation, cellular localization, and transport. Herein, for the first time, we report the involvement of the host SUMOylation pathway in the process of infection of Leishmania donovani, a causative agent of visceral leishmaniasis. Our data revealed that infection of L. donovani to the host macrophages leads to upregulation of SUMOylation pathway genes and downregulation of a deSUMOylating gene, SENP1. Further, to confirm the effect of the host SUMOylation on the growth of Leishmania, the genes associated with the SUMOylation pathway were silenced and parasite load was analyzed. The knockdown of the SUMOylation pathway led to a reduction in parasitic load, suggesting the role of the host SUMOylation pathway in the disease progression and parasite survival. Owing to the effect of the SUMOylation pathway in autophagy, we further investigated the status of host autophagy to gain mechanistic insights into how SUMOylation mediates the regulation of growth of L. donovani. Knockdown of genes of host SUMOylation pathway led to the reduction of the expression levels of host autophagy markers while promoting autophagosome–lysosome fusion, suggesting SUMOylation-mediated autophagy in terms of autophagy initiation and autophagy maturation during parasite survival. The levels of reactive oxygen species (ROS) generation, nitric oxide (NO) production, and pro-inflammatory cytokines were also elevated upon the knockdown of genes of the host SUMOylation pathway during L. donovani infection. This indicates the involvement of the SUMOylation pathway in the modulation of protective immune responses and thus favoring parasite survival. Taken together, the results of this study indicate the hijacking of the host SUMOylation pathway by L. donovani toward the suppression of host immune responses and facilitation of host autophagy to potentially facilitate its survival. Targeting of SUMOylation pathway can provide a starting point for the design and development of novel therapeutic interventions to combat leishmaniasis.
Collapse
Affiliation(s)
- Jhalak Singhal
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| | | | | | | | | | | | | | | | | | | | - Anand Ranganathan
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| | - Shailja Singh
- *Correspondence: Jhalak Singhal, ; Anand Ranganathan, ; Shailja Singh,
| |
Collapse
|
6
|
Dhingra N, Zhao X. Advances in SUMO-based regulation of homologous recombination. Curr Opin Genet Dev 2021; 71:114-119. [PMID: 34333341 PMCID: PMC8671156 DOI: 10.1016/j.gde.2021.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
Homologous Recombination (HR) is a critical DNA repair mechanism for a range of genome lesions. HR is responsible for mending DNA double strand breaks (DSBs) using intact template DNA. In addition, many HR proteins help cope with DNA lesions generated from DNA replication and telomere deficiency. The functions of HR proteins are often regulated by protein modifications that can quickly and reversibly adjust substrate proteins' attributes. Sumoylation is one of the prevalent modifications that affects all steps of the HR processes and exerts diverse regulation on substrates. This review aims to summarize the most recent advances in our understanding of SUMO-based HR regulation and highlight some key questions that remain to be elucidated.
Collapse
Affiliation(s)
- Nalini Dhingra
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
7
|
Giaccherini C, Gaillard P. Control of structure-specific endonucleases during homologous recombination in eukaryotes. Curr Opin Genet Dev 2021; 71:195-205. [PMID: 34624742 DOI: 10.1016/j.gde.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
Structure-Specific Endonucleases (SSE) are specialized DNA endonucleases that recognize and process DNA secondary structures without any strict dependency on the nucleotide sequence context. This enables them to act virtually anywhere in the genome and to make key contributions to the maintenance of genome stability by removing DNA structures that may stall essential cellular processes such as DNA replication, transcription, repair and chromosome segregation. During repair of double strand breaks by homologous recombination mechanisms, DNA secondary structures are formed and processed in a timely manner. Their homeostasis relies on the combined action of helicases, SSE and topoisomerases. In this review, we focus on how SSE contribute to DNA end resection, single-strand annealing and double-strand break repair, with an emphasis on how their action is fine-tuned in those processes.
Collapse
Affiliation(s)
- C Giaccherini
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Phl Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
8
|
Appanah R, Jones D, Falquet B, Rass U. Limiting homologous recombination at stalled replication forks is essential for cell viability: DNA2 to the rescue. Curr Genet 2020; 66:1085-1092. [PMID: 32909097 PMCID: PMC7599155 DOI: 10.1007/s00294-020-01106-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/18/2022]
Abstract
The disease-associated nuclease–helicase DNA2 has been implicated in DNA end-resection during DNA double-strand break repair, Okazaki fragment processing, and the recovery of stalled DNA replication forks (RFs). Its role in Okazaki fragment processing has been proposed to explain why DNA2 is indispensable for cell survival across organisms. Unexpectedly, we found that DNA2 has an essential role in suppressing homologous recombination (HR)-dependent replication restart at stalled RFs. In the absence of DNA2-mediated RF recovery, excessive HR-restart of stalled RFs results in toxic levels of abortive recombination intermediates that lead to DNA damage-checkpoint activation and terminal cell-cycle arrest. While HR proteins protect and restart stalled RFs to promote faithful genome replication, these findings show how HR-dependent replication restart is actively constrained by DNA2 to ensure cell survival. These new insights disambiguate the effects of DNA2 dysfunction on cell survival, and provide a framework to rationalize the association of DNA2 with cancer and the primordial dwarfism disorder Seckel syndrome based on its role in RF recovery.
Collapse
Affiliation(s)
- Rowin Appanah
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - David Jones
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Benoît Falquet
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, 4056, Basel, Switzerland
| | - Ulrich Rass
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
| |
Collapse
|
9
|
Mariotti L, Wild S, Brunoldi G, Piceni A, Ceppi I, Kummer S, Lutz RE, Cejka P, Gari K. The iron-sulphur cluster in human DNA2 is required for all biochemical activities of DNA2. Commun Biol 2020; 3:322. [PMID: 32576938 PMCID: PMC7311471 DOI: 10.1038/s42003-020-1048-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 06/03/2020] [Indexed: 11/25/2022] Open
Abstract
The nuclease/helicase DNA2 plays important roles in DNA replication, repair and processing of stalled replication forks. DNA2 contains an iron-sulphur (FeS) cluster, conserved in eukaryotes and in a related bacterial nuclease. FeS clusters in DNA maintenance proteins are required for structural integrity and/or act as redox-sensors. Here, we demonstrate that loss of the FeS cluster affects binding of human DNA2 to specific DNA substrates, likely through a conformational change that distorts the central DNA binding tunnel. Moreover, we show that the FeS cluster is required for DNA2’s nuclease, helicase and ATPase activities. Our data also establish that oxidation of DNA2 impairs DNA binding in vitro, an effect that is reversible upon reduction. Unexpectedly, though, this redox-regulation is independent of the presence of the FeS cluster. Together, our study establishes an important structural role for the FeS cluster in human DNA2 and discovers a redox-regulatory mechanism to control DNA binding. Mariotti et al. show that the iron-sulphur cluster in human DNA2 is required for its nuclease, helicase and ATPase activities. This study highlights the structural importance of the iron-sulphur cluster in human DNA2 and presents a separate redox-regulatory mechanism that controls DNA binding.
Collapse
Affiliation(s)
- Laura Mariotti
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland.
| | - Sebastian Wild
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Giulia Brunoldi
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Alessandra Piceni
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Ilaria Ceppi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zurich, 8092, Zurich, Switzerland
| | - Sandra Kummer
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Richard E Lutz
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland
| | - Petr Cejka
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera italiana, 6500, Bellinzona, Switzerland.,Department of Biology, Institute of Biochemistry, ETH Zurich, 8092, Zurich, Switzerland
| | - Kerstin Gari
- Institute of Molecular Cancer Research, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
10
|
Molecular mechanisms in SUMO conjugation. Biochem Soc Trans 2020; 48:123-135. [PMID: 31872228 DOI: 10.1042/bst20190357] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 01/25/2023]
Abstract
The small ubiquitin-like modifier (SUMO) is a post-translational modifier that can regulate the function of hundreds of proteins inside the cell. SUMO belongs to the ubiquitin-like family of proteins that can be attached to target proteins by a dedicated enzymatic cascade pathway formed by E1, E2 and E3 enzymes. SUMOylation is involved in many cellular pathways, having in most instances essential roles for their correct function. In this review, we want to highlight the latest research on the molecular mechanisms that lead to the formation of the isopeptidic bond between the lysine substrate and the C-terminus of SUMO. In particular, we will focus on the recent discoveries on the catalytic function of the SUMO E3 ligases revealed by structural and biochemical approaches. Also, we will discuss important questions regarding specificity in SUMO conjugation, which it still remains as a major issue due to the small number of SUMO E3 ligases discovered so far, in contrast with the large number of SUMO conjugated proteins in the cell.
Collapse
|
11
|
Zheng L, Meng Y, Campbell JL, Shen B. Multiple roles of DNA2 nuclease/helicase in DNA metabolism, genome stability and human diseases. Nucleic Acids Res 2020; 48:16-35. [PMID: 31754720 PMCID: PMC6943134 DOI: 10.1093/nar/gkz1101] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/23/2019] [Accepted: 11/12/2019] [Indexed: 12/25/2022] Open
Abstract
DNA2 nuclease/helicase is a structure-specific nuclease, 5'-to-3' helicase, and DNA-dependent ATPase. It is involved in multiple DNA metabolic pathways, including Okazaki fragment maturation, replication of 'difficult-to-replicate' DNA regions, end resection, stalled replication fork processing, and mitochondrial genome maintenance. The participation of DNA2 in these different pathways is regulated by its interactions with distinct groups of DNA replication and repair proteins and by post-translational modifications. These regulatory mechanisms induce its recruitment to specific DNA replication or repair complexes, such as DNA replication and end resection machinery, and stimulate its efficient cleavage of various structures, for example, to remove RNA primers or to produce 3' overhangs at telomeres or double-strand breaks. Through these versatile activities at replication forks and DNA damage sites, DNA2 functions as both a tumor suppressor and promoter. In normal cells, it suppresses tumorigenesis by maintaining the genomic integrity. Thus, DNA2 mutations or functional deficiency may lead to cancer initiation. However, DNA2 may also function as a tumor promoter, supporting cancer cell survival by counteracting replication stress. Therefore, it may serve as an ideal target to sensitize advanced DNA2-overexpressing cancers to current chemo- and radiotherapy regimens.
Collapse
Affiliation(s)
- Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Yuan Meng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Judith L Campbell
- Divisions of Chemistry and Chemical Engineering and Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
12
|
Abstract
As of January 1st 2019, authors submitting manuscripts to Communications Biology can choose to publish the reviewer reports and author replies with their articles. The first articles with associated reviewer reports have now been published, representing an important step in our broader journey toward greater openness.
Collapse
|