1
|
Sweet AD, Doña J, Johnson KP. Biogeographic History of Pigeons and Doves Drives the Origin and Diversification of Their Parasitic Body Lice. Syst Biol 2025; 74:198-214. [PMID: 39037176 DOI: 10.1093/sysbio/syae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 07/23/2024] Open
Abstract
Despite their extensive diversity and ecological importance, the history of diversification for most groups of parasitic organisms remains relatively understudied. Elucidating broad macroevolutionary patterns of parasites is challenging, often limited by the availability of samples, genetic resources, and knowledge about ecological relationships with their hosts. In this study, we explore the macroevolutionary history of parasites by focusing on parasitic body lice from doves. Building on extensive knowledge of ecological relationships and previous phylogenomic studies of their avian hosts, we tested specific questions about the evolutionary origins of the body lice of doves, leveraging whole genome data sets for phylogenomics. Specifically, we sequenced whole genomes from 68 samples of dove body lice, including representatives of all body louse genera from 51 host taxa. From these data, we assembled > 2300 nuclear genes to estimate dated phylogenetic relationships among body lice and several outgroup taxa. The resulting phylogeny of body lice was well supported, although some branches had conflicting signals across the genome. We then reconstructed ancestral biogeographic ranges of body lice and compared the body louse phylogeny to the phylogeny of doves, and also to a previously published phylogeny of the wing lice of doves. Divergence estimates placed the origin of body lice in the late Oligocene. Body lice likely originated in Australasia and dispersed with their hosts during the early Miocene, with subsequent codivergence and host switching throughout the world. Notably, this evolutionary history is very similar to that of dove wing lice, despite the stronger dispersal capabilities of wing lice compared to body lice. Our results highlight the central role of the biogeographic history of host organisms in driving the evolutionary history of their parasites across time and geographic space.
Collapse
Affiliation(s)
- Andrew D Sweet
- Department of Biological Sciences, Arkansas State University, PO Box 599, State University, AR 72467, USA
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak St., Champaign, IL 61820, USA
- Departamento de Zoología, Universidad de Granada, Avenida de la Fuente Nueva S/N, Granada 18071, Spain
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak St., Champaign, IL 61820, USA
| |
Collapse
|
2
|
Grant AR, Johnson KP, Stanley EL, Baldwin-Brown J, Kolenčík S, Allen JM. Rapid Targeted Assembly of the Proteome Reveals Evolutionary Variation of GC Content in Avian Lice. Bioinform Biol Insights 2024; 18:11779322241257991. [PMID: 38860163 PMCID: PMC11163934 DOI: 10.1177/11779322241257991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/02/2024] [Indexed: 06/12/2024] Open
Abstract
Nucleotide base composition plays an influential role in the molecular mechanisms involved in gene function, phenotype, and amino acid composition. GC content (proportion of guanine and cytosine in DNA sequences) shows a high level of variation within and among species. Many studies measure GC content in a small number of genes, which may not be representative of genome-wide GC variation. One challenge when assembling extensive genomic data sets for these studies is the significant amount of resources (monetary and computational) associated with data processing, and many bioinformatic tools have not been optimized for resource efficiency. Using a high-performance computing (HPC) cluster, we manipulated resources provided to the targeted gene assembly program, automated target restricted assembly method (aTRAM), to determine an optimum way to run the program to maximize resource use. Using our optimum assembly approach, we assembled and measured GC content of all of the protein-coding genes of a diverse group of parasitic feather lice. Of the 499 426 genes assembled across 57 species, feather lice were GC-poor (mean GC = 42.96%) with a significant amount of variation within and between species (GC range = 19.57%-73.33%). We found a significant correlation between GC content and standard deviation per taxon for overall GC and GC3, which could indicate selection for G and C nucleotides in some species. Phylogenetic signal of GC content was detected in both GC and GC3. This research provides a large-scale investigation of GC content in parasitic lice laying the foundation for understanding the basis of variation in base composition across species.
Collapse
Affiliation(s)
- Avery R Grant
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | - Stanislav Kolenčík
- Faculty of Mathematics, Natural Sciences, and Information Technologies, University of Primorska, Koper, Slovenia
| | - Julie M Allen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
3
|
Grossi AA, Tian C, Ren M, Zou F, Gustafsson DR. Co-phylogeny of a hyper-symbiotic system: Endosymbiotic bacteria (Gammaproteobacteria), chewing lice (Insecta: Phthiraptera) and birds (Passeriformes). Mol Phylogenet Evol 2024; 190:107957. [PMID: 37914031 DOI: 10.1016/j.ympev.2023.107957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Chewing lice are hosts to endosymbiotic bacteria as well as themselves being permanent parasites. This offers a unique opportunity to examine the cophylogenetic relationships between three ecologically interconnected organismal groups: birds, chewing lice, and bacteria. Here, we examine the cophylogenetic relationships between lice in the genus Guimaraesiella Eichler, 1949, their endosymbiotic Sodalis-allied bacteria, and a range of bird species from across South China. Both event and distance-based cophylogenetic analyses were explored to compare phylogenies of the three organismal groups. Pair-wise comparisons between lice-endosymbionts and bird-endosymbionts indicated that their evolutionary histories are not independent. However, comparisons between lice and birds, showed mixed results; the distance-based method of ParaFit indicated that their evolutionary histories are not independent, while the event-based method of Jane indicated that their phylogenies were no more congruent than expected by chance. Notably, louse host-switching does not seem to have affected bacterial strains, as conspecific lice sampled from distantly related hosts share bacteria belonging to the same clade.
Collapse
Affiliation(s)
- Alexandra A Grossi
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Library of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang West Road, Haizhu District, Guangzhou 510260, Guangdong Province, China.
| | - Chunpo Tian
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Library of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang West Road, Haizhu District, Guangzhou 510260, Guangdong Province, China; College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Street, Chang'an District, Xi'an City 710119, Shaanxi Province, China.
| | - Mengjiao Ren
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Library of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang West Road, Haizhu District, Guangzhou 510260, Guangdong Province, China; College of Biology and Environmental Science, Jishou University, 120 Renmin Road, Jishou 416000, Hunan Province, China.
| | - Fasheng Zou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Library of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang West Road, Haizhu District, Guangzhou 510260, Guangdong Province, China.
| | - Daniel R Gustafsson
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Library of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, 105 Xingang West Road, Haizhu District, Guangzhou 510260, Guangdong Province, China.
| |
Collapse
|
4
|
Kelly B, Izenour K, Zohdy S. Parasite–Host Coevolution. GENETICS AND EVOLUTION OF INFECTIOUS DISEASES 2024:141-161. [DOI: 10.1016/b978-0-443-28818-0.00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Doña J, Johnson KP. Host body size, not host population size, predicts genome-wide effective population size of parasites. Evol Lett 2023; 7:285-292. [PMID: 37475749 PMCID: PMC10355176 DOI: 10.1093/evlett/qrad026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 07/22/2023] Open
Abstract
The effective population size (Ne) of an organism is expected to be generally proportional to the total number of individuals in a population. In parasites, we might expect the effective population size to be proportional to host population size and host body size, because both are expected to increase the number of parasite individuals. However, among other factors, parasite populations are sometimes so extremely subdivided that high levels of inbreeding may distort these predicted relationships. Here, we used whole-genome sequence data from dove parasites (71 feather louse species of the genus Columbicola) and phylogenetic comparative methods to study the relationship between parasite effective population size and host population size and body size. We found that parasite effective population size is largely explained by host body size but not host population size. These results suggest the potential local population size (infrapopulation or deme size) is more predictive of the long-term effective population size of parasites than is the total number of potential parasite infrapopulations (i.e., host individuals).
Collapse
Affiliation(s)
- Jorge Doña
- Corresponding authors: Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, United States.
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, United States.
| |
Collapse
|
6
|
Johnson KP. Genomic Approaches to Uncovering the Coevolutionary History of Parasitic Lice. Life (Basel) 2022; 12:life12091442. [PMID: 36143478 PMCID: PMC9501036 DOI: 10.3390/life12091442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New sequencing technologies have now made it possible to sequence entire genomes for a diversity of life on earth. Parasites comprise nearly half of all species. Lice are one important group of parasites of birds and mammals, including humans. Genome sequencing approaches have been applied to this group of parasites to uncover patterns of diversification. These patterns can be compared to the patterns of diversification in their hosts. Key findings from these studies have revealed that parasitic lice likely originated on birds and then switched to mammals multiple times. Within groups of birds and mammals, the evolutionary trees of lice match those for mammal hosts more than those for birds. Genomic approaches have also revealed that individual birds and mammals harbor distinct populations of lice. Thus, these new techniques allow for the study of patterns of diversification at a wide variety of scales. Abstract Next-generation sequencing technologies are revolutionizing the fields of genomics, phylogenetics, and population genetics. These new genomic approaches have been extensively applied to a major group of parasites, the lice (Insecta: Phthiraptera) of birds and mammals. Two louse genomes have been assembled and annotated to date, and these have opened up new resources for the study of louse biology. Whole genome sequencing has been used to assemble large phylogenomic datasets for lice, incorporating sequences of thousands of genes. These datasets have provided highly supported trees at all taxonomic levels, ranging from relationships among the major groups of lice to those among closely related species. Such approaches have also been applied at the population scale in lice, revealing patterns of population subdivision and inbreeding. Finally, whole genome sequence datasets can also be used for additional study beyond that of the louse nuclear genome, such as in the study of mitochondrial genome fragmentation or endosymbiont function.
Collapse
Affiliation(s)
- Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA
| |
Collapse
|
7
|
Phylogenomics reveals the origin of mammal lice out of Afrotheria. Nat Ecol Evol 2022; 6:1205-1210. [PMID: 35788706 DOI: 10.1038/s41559-022-01803-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/19/2022] [Indexed: 11/08/2022]
Abstract
Mammals host a wide diversity of parasites. Lice, comprising more than 5,000 species, are one group of ectoparasites whose major lineages have a somewhat patchwork distribution across the major groups of mammals. Here we explored patterns in the diversification of mammalian lice by reconstructing a higher-level phylogeny of these lice, leveraging whole genome sequence reads to assemble single-copy orthologue genes across the genome. The evolutionary tree of lice indicated that three of the major lineages of placental mammal lice had a single common ancestor. Comparisons of this parasite phylogeny with that for their mammalian hosts indicated that the common ancestor of elephants, elephant shrews and hyraxes (that is, Afrotheria) was the ancestral host of this group of lice. Other groups of placental mammals obtained their lice via host-switching out of these Afrotherian ancestors. In addition, reconstructions of the ancestral host group (bird versus mammal) for all parasitic lice supported an avian ancestral host, indicating that the ancestor of Afrotheria acquired these parasites via host-switching from an ancient avian host. These results shed new light on the long-standing question of why the major groups of parasitic lice are not uniformly distributed across mammals and reveal the origins of mammalian lice.
Collapse
|
8
|
Smith G, Manzano-Marín A, Reyes-Prieto M, Antunes CSR, Ashworth V, Goselle ON, Jan AAA, Moya A, Latorre A, Perotti MA, Braig HR. Human follicular mites: Ectoparasites becoming symbionts. Mol Biol Evol 2022; 39:msac125. [PMID: 35724423 PMCID: PMC9218549 DOI: 10.1093/molbev/msac125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Most humans carry mites in the hair follicles of their skin for their entire lives. Follicular mites are the only metazoans tha continuously live on humans. We propose that Demodex folliculorum (Acari) represents a transitional stage from a host-injuring obligate parasite to an obligate symbiont. Here, we describe the profound impact of this transition on the genome and physiology of the mite. Genome sequencing revealed that the permanent host association of D. folliculorum led to an extensive genome reduction through relaxed selection and genetic drift, resulting in the smallest number of protein-coding genes yet identified among panarthropods. Confocal microscopy revealed that this gene loss coincided with an extreme reduction in the number of cells. Single uninucleate muscle cells are sufficient to operate each of the three segments that form each walking leg. While it has been assumed that the reduction of the cell number in parasites starts early in development, we identified a greater total number of cells in the last developmental stage (nymph) than in the terminal adult stage, suggesting that reduction starts at the adult or ultimate stage of development. This is the first evolutionary step in an arthropod species adopting a reductive, parasitic or endosymbiotic lifestyle. Somatic nuclei show underreplication at the diploid stage. Novel eye structures or photoreceptors as well as a unique human host melatonin-guided day/night rhythm are proposed for the first time. The loss of DNA repair genes coupled with extreme endogamy might have set this mite species on an evolutionary dead-end trajectory.
Collapse
Affiliation(s)
- Gilbert Smith
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Alejandro Manzano-Marín
- Centre for Microbiology and Environmental Systems Science (CMESS), University of Vienna, Vienna, Austria
| | - Mariana Reyes-Prieto
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
| | | | - Victoria Ashworth
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | - Obed Nanjul Goselle
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
| | | | - Andrés Moya
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
- Center for Networked Biomedical Research in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - Amparo Latorre
- Institute of Integrative Systems Biology (I2Sysbio), Universitat de València and Spanish Research Council (CSIC), València, Spain
- Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO), València, Spain
- Center for Networked Biomedical Research in Epidemiology and Public Health (CIBEResp), Madrid, Spain
| | - M Alejandra Perotti
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Henk R Braig
- School of Natural Sciences, Bangor University, Bangor, Wales, United Kingdom
- Institute and Museum of Natural Sciences, National University of San Juan, San Juan, Argentina
| |
Collapse
|
9
|
Kolencik S, Johnson KP, Grant AR, Valim MP, Kuabara KMD, Weckstein JD, Allen JM. Molecular phylogenetics of the avian feather louse Philopterus-complex (Phthiraptera: Philopteridae). Mol Phylogenet Evol 2022; 174:107556. [PMID: 35738542 DOI: 10.1016/j.ympev.2022.107556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/19/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
The avian feather louse Philopterus-complex (Phthiraptera: Ischnocera: Philopteridae) currently contains 12 genera that have been grouped together because of shared morphological characteristics. Although previously lumped into a single genus (Philopterus), more recent morphological treatments have separated the group into several different genera. Here we evaluate the status of these genera using DNA sequence data from 118 ingroup specimens belonging to ten genera in the Philopterus-complex: Australophilopterus Mey, 2004, Cinclosomicola Mey 2004, Clayiella Eichler, 1940, Corcorides Mey, 2004, Mayriphilopterus Mey, 2004, Paraphilopterus Mey 2004, Philopteroides Mey 2004, Philopterus Nitzsch, 1818, Tyranniphilopterus Mey, 2004, and Vinceopterus Gustafsson, Lei, Chu, Zou, and Bush, 2019. Our sampling includes 97 new louse-host association records. Our analyses suggest that the genus Debeauxoecus Conci, 1941, parasitic on pittas (Aves: Pittidae), is outside of the Philopterus-complex, and that there is strong support for the monophyly of a group containing the remaining genera from the complex. Some diverse genera, such as Philopterus (sensu stricto) and Mayriphilopterus are supported as monophyletic, whereas the genera Australophilopterus, Philopteroides, and Tyranniphilopterus are not. The present study is the largest phylogenetic reconstruction of avian lice belonging to the Philopterus-complex to date and suggests that further generic revision is needed in the group to integrate molecular and morphological information.
Collapse
Affiliation(s)
- Stanislav Kolencik
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana Champaign, Champaign, IL 61820, USA
| | - Avery R Grant
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| | - Michel P Valim
- Universidade Iguaçu, Nova Iguaçu, Rio de Janeiro 28300-000, Brazil
| | - Kamila M D Kuabara
- Department of Ornithology, Academy of Natural Sciences of Drexel University and Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University and Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, 1900 Benjamin Franklin Parkway, Philadelphia, PA 19103, USA
| | - Julie M Allen
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
10
|
de Moya RS. Phylogenomics and host-switching patterns of philopteridae (Psocodea: phthiraptera) feather lice. Int J Parasitol 2022; 52:525-537. [DOI: 10.1016/j.ijpara.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 11/05/2022]
|
11
|
Johnson KP, Weckstein JD, Virrueta Herrera S, Doña J. The interplay between host biogeography and phylogeny in structuring diversification of the feather louse genus Penenirmus. Mol Phylogenet Evol 2021; 165:107297. [PMID: 34438049 DOI: 10.1016/j.ympev.2021.107297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
Parasite diversification is influenced by many of the same factors that affect speciation of free-living organisms, such as biogeographic barriers. However, the ecology and evolution of the host lineage also has a major impact on parasite speciation. Here we explore the interplay between biogeography and host-association on the pattern of diversification in a group of ectoparasitic lice (Insecta: Phthiraptera: Penenirmus) that feeds on the feathers of woodpeckers, barbets, and honeyguides (Piciformes) and some songbirds (Passeriformes). We use whole genome sequencing of 41 ingroup and 12 outgroup samples to develop a phylogenomic dataset of DNA sequences from a reference set of 2395 single copy ortholog genes, for a total of nearly four million aligned base positions. The phylogenetic trees resulting from both concatenated and gene-tree/species-tree coalescent analyses were nearly identical and highly supported. These trees recovered the genus Penenirmus as monophyletic and identified several major clades, which tended to be associated with one major host group. However, cophylogenetic analysis revealed that host-switching was a prominent process in the diversification of this group. This host-switching generally occurred within single major biogeographic regions. We did, however, find one case in which it appears that a rare dispersal event by a woodpecker lineage from North America to Africa allowed its associated louse to colonize a woodpecker in Africa, even though the woodpecker lineage from North America never became established there.
Collapse
Affiliation(s)
- Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Jason D Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University and Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, USA
| | - Stephany Virrueta Herrera
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Program in Ecology, Evolution, and Conservation, University of Illinois, Urbana, IL, USA
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Departamento de Biología Animal, Universidad de Granada, Granada, Spain.
| |
Collapse
|
12
|
Sweet AD, Johnson KP, Cao Y, de Moya RS, Skinner RK, Tan M, Virrueta Herrera S, Cameron SL. Structure, gene order, and nucleotide composition of mitochondrial genomes in parasitic lice from Amblycera. Gene 2020; 768:145312. [PMID: 33220346 DOI: 10.1016/j.gene.2020.145312] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 11/28/2022]
Abstract
Parasitic lice have unique mitochondrial (mt) genomes characterized by rearranged gene orders, variable genome structures, and less AT content compared to most other insects. However, relatively little is known about the mt genomes of Amblycera, the suborder sister to all other parasitic lice. Comparing among nine different genera (including representative of all seven families), we show that Amblycera have variable and highly rearranged mt genomes. Some genera have fragmented genomes that vary considerably in length, whereas others have a single mt chromosome. Notably, these genomes are more AT-biased than most other lice. We also recover genus-level phylogenetic relationships among Amblycera that are consistent with those reported from large nuclear datasets, indicating that mt sequences are reliable for reconstructing evolutionary relationships in Amblycera. However, gene order data cannot reliably recover these same relationships. Overall, our results suggest that the mt genomes of lice, already know to be distinctive, are even more variable than previously thought.
Collapse
Affiliation(s)
- Andrew D Sweet
- Department of Entomology, Purdue University, West Lafayette, IN, USA; Department of Biological Sciences, Arkansas State University, State University, AR, USA.
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Yanghui Cao
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Robert S de Moya
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Department of Entomology, University of Illinois, Urbana, IL, USA
| | - Rachel K Skinner
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Department of Entomology, University of Illinois, Urbana, IL, USA
| | - Milton Tan
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA
| | - Stephany Virrueta Herrera
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL, USA; Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, USA
| | - Stephen L Cameron
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
13
|
Bell KC, Allen JM, Johnson KP, Demboski JR, Cook JA. Disentangling lousy relationships: Comparative phylogenomics of two sucking louse lineages parasitizing chipmunks. Mol Phylogenet Evol 2020; 155:106998. [PMID: 33130299 DOI: 10.1016/j.ympev.2020.106998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/29/2022]
Abstract
The evolution of obligate parasites is often interpreted in light of their hosts' evolutionary history. An expanded approach is to examine the histories of multiple lineages of parasites that inhabit similar environments on a particular host lineage. Western North American chipmunks (genus Tamias) have a broad distribution, a history of divergence with gene flow, and host two species of sucking lice (Anoplura), Hoplopleura arboricola and Neohaematopinus pacificus. From total genomic sequencing, we obtained sequences of over 1100 loci sampled across the genomes of these lice to compare their evolutionary histories and examine the roles of host association in structuring louse relationships. Within each louse species, clades are largely associated with closely related chipmunk host species. Exceptions to this pattern appear to have a biogeographic component, but differ between the two louse species. Phylogenetic relationships among these major louse clades, in both species, are not congruent with chipmunk relationships. In the context of host associations, each louse lineage has a different evolutionary history, supporting the hypothesis that host-parasite assemblages vary both across the landscape and with the taxa under investigation. In addition, the louse Hoplopleura erratica (parasitizing the eastern Tamias striatus) is embedded within H. arboricola, rendering it paraphyletic. This phylogenetic result, together with comparable divergences within H. arboricola, indicate a need for taxonomic revision. Both host divergence and biogeographic components shape parasite diversification as demonstrated by the distinctive diversification patterns of these two independently evolving lineages that parasitize the same hosts.
Collapse
Affiliation(s)
- Kayce C Bell
- Mammalogy Department, Natural History Museum of Los Angeles County, Los Angeles, CA, USA; Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA; Zoology Department, Denver Museum of Nature & Science, Denver, CO, USA.
| | - Julie M Allen
- Department of Biology, University of Nevada Reno, Reno, NV, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - John R Demboski
- Zoology Department, Denver Museum of Nature & Science, Denver, CO, USA
| | - Joseph A Cook
- Department of Biology, Museum of Southwestern Biology, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
14
|
de Moya RS, Yoshizawa K, Walden KKO, Sweet AD, Dietrich CH, Kevin P J. Phylogenomics of Parasitic and Nonparasitic Lice (Insecta: Psocodea): Combining Sequence Data and Exploring Compositional Bias Solutions in Next Generation Data Sets. Syst Biol 2020; 70:719-738. [PMID: 32979270 DOI: 10.1093/sysbio/syaa075] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/13/2022] Open
Abstract
The insect order Psocodea is a diverse lineage comprising both parasitic (Phthiraptera) and nonparasitic members (Psocoptera). The extreme age and ecological diversity of the group may be associated with major genomic changes, such as base compositional biases expected to affect phylogenetic inference. Divergent morphology between parasitic and nonparasitic members has also obscured the origins of parasitism within the order. We conducted a phylogenomic analysis on the order Psocodea utilizing both transcriptome and genome sequencing to obtain a data set of 2370 orthologous genes. All phylogenomic analyses, including both concatenated and coalescent methods suggest a single origin of parasitism within the order Psocodea, resolving conflicting results from previous studies. This phylogeny allows us to propose a stable ordinal level classification scheme that retains significant taxonomic names present in historical scientific literature and reflects the evolution of the group as a whole. A dating analysis, with internal nodes calibrated by fossil evidence, suggests an origin of parasitism that predates the K-Pg boundary. Nucleotide compositional biases are detected in third and first codon positions and result in the anomalous placement of the Amphientometae as sister to Psocomorpha when all nucleotide sites are analyzed. Likelihood-mapping and quartet sampling methods demonstrate that base compositional biases can also have an effect on quartet-based methods.[Illumina; Phthiraptera; Psocoptera; quartet sampling; recoding methods.].
Collapse
Affiliation(s)
- Robert S de Moya
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801, USA.,Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Kazunori Yoshizawa
- Systematic Entomology, School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Kimberly K O Walden
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana, IL 61801, USA
| | - Andrew D Sweet
- Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907, USA
| | - Christopher H Dietrich
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| | - Johnson Kevin P
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
15
|
Gajdošová M, Sychra O, Kreisinger J, Sedláček O, Nana ED, Albrecht T, Munclinger P. Patterns of host-parasite associations in tropical lice and their passerine hosts in Cameroon. Ecol Evol 2020; 10:6512-6524. [PMID: 32724529 PMCID: PMC7381757 DOI: 10.1002/ece3.6386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 01/30/2023] Open
Abstract
Coevolutionary processes that drive the patterns of host-parasite associations can be deduced through congruence analysis of their phylogenies. Feather lice and their avian hosts have previously been used as typical model systems for congruence analysis; however, such analyses are strongly biased toward nonpasserine hosts in the temperate zone. Further, in the Afrotropical region especially, cospeciation studies of lice and birds are entirely missing. This work supplements knowledge of host-parasite associations in lice using cospeciation analysis of feather lice (genus Myrsidea and the Brueelia complex) and their avian hosts in the tropical rainforests of Cameroon. Our analysis revealed a limited number of cospeciation events in both parasite groups. The parasite-host associations in both louse groups were predominantly shaped by host switching. Despite a general dissimilarity in phylogeny for the parasites and hosts, we found significant congruence in host-parasite distance matrices, mainly driven by associations between Brueelia lice and passerine species of the Waxbill (Estrildidae) family, and Myrsidea lice and their Bulbul (Pycnonotidae) host species. As such, our study supports the importance of complex biotic interactions in tropical environments.
Collapse
Affiliation(s)
- Magdalena Gajdošová
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Department of EcologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Oldřich Sychra
- Department of Biology and Wildlife DiseasesFaculty of Veterinary Hygiene and EcologyUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
| | - Jakub Kreisinger
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Ondřej Sedláček
- Department of EcologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Eric Djomo Nana
- Institute of Agricultural Research for Development (IRAD)Messa ‐YaoundéCameroon
| | - Tomáš Albrecht
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Pavel Munclinger
- Department of ZoologyFaculty of ScienceCharles UniversityPragueCzech Republic
| |
Collapse
|