1
|
Yu X, Niu H, Liu C, Wang H, Yin W, Xia X. PTI-ETI synergistic signal mechanisms in plant immunity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2113-2128. [PMID: 38470397 PMCID: PMC11258992 DOI: 10.1111/pbi.14332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 03/13/2024]
Abstract
Plants face a relentless onslaught from a diverse array of pathogens in their natural environment, to which they have evolved a myriad of strategies that unfold across various temporal scales. Cell surface pattern recognition receptors (PRRs) detect conserved elicitors from pathogens or endogenous molecules released during pathogen invasion, initiating the first line of defence in plants, known as pattern-triggered immunity (PTI), which imparts a baseline level of disease resistance. Inside host cells, pathogen effectors are sensed by the nucleotide-binding/leucine-rich repeat (NLR) receptors, which then activate the second line of defence: effector-triggered immunity (ETI), offering a more potent and enduring defence mechanism. Moreover, PTI and ETI collaborate synergistically to bolster disease resistance and collectively trigger a cascade of downstream defence responses. This article provides a comprehensive review of plant defence responses, offering an overview of the stepwise activation of plant immunity and the interactions between PTI-ETI synergistic signal transduction.
Collapse
Affiliation(s)
- Xiao‐Qian Yu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hao‐Qiang Niu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Chao Liu
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Hou‐Ling Wang
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Weilun Yin
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| | - Xinli Xia
- State Key Laboratory of Tree Genetics and BreedingCollege of Biological Sciences and Technology, College of Biological Sciences and Technology, Beijing Forestry UniversityBeijingChina
| |
Collapse
|
2
|
Leibman-Markus M, Schneider A, Gupta R, Marash I, Rav-David D, Carmeli-Weissberg M, Elad Y, Bar M. Immunity priming uncouples the growth-defense trade-off in tomato. Development 2023; 150:dev201158. [PMID: 37882831 DOI: 10.1242/dev.201158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Plants have developed an array of mechanisms to protect themselves against pathogen invasion. The deployment of defense mechanisms is imperative for plant survival, but can come at the expense of plant growth, leading to the 'growth-defense trade-off' phenomenon. Following pathogen exposure, plants can develop resistance to further attack. This is known as induced resistance, or priming. Here, we investigated the growth-defense trade-off, examining how defense priming via systemic acquired resistance (SAR), or induced systemic resistance (ISR), affects tomato development and growth. We found that defense priming can promote, rather than inhibit, plant development, and that defense priming and growth trade-offs can be uncoupled. Cytokinin response was activated during induced resistance, and found to be required for the observed growth and disease resistance resulting from ISR activation. ISR was found to have a stronger effect than SAR on plant development. Our results suggest that growth promotion and induced resistance can be co-dependent, and that, in certain cases, defense priming can drive developmental processes and promote plant yield.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Anat Schneider
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Iftah Marash
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
- School of Plant Science and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Mira Carmeli-Weissberg
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Bet Dagan 50250, Israel
| |
Collapse
|
3
|
Gupta R, Leibman-Markus M, Weiss D, Spiegelman Z, Bar M. Tobamovirus infection aggravates gray mold disease caused by Botrytis cinerea by manipulating the salicylic acid pathway in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1196456. [PMID: 37377809 PMCID: PMC10291333 DOI: 10.3389/fpls.2023.1196456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Botrytis cinerea is the causative agent of gray mold disease, and infects more than 1400 plant species, including important crop plants. In tomato, B. cinerea causes severe damage in greenhouses and post-harvest storage and transport. Plant viruses of the Tobamovirus genus cause significant damage to various crop species. In recent years, the tobamovirus tomato brown rugose fruit virus (ToBRFV) has significantly affected the global tomato industry. Most studies of plant-microbe interactions focus on the interaction between the plant host and a single pathogen, however, in agricultural or natural environments, plants are routinely exposed to multiple pathogens. Here, we examined how preceding tobamovirus infection affects the response of tomato to subsequent infection by B. cinerea. We found that infection with the tobamoviruses tomato mosaic virus (ToMV) or ToBRFV resulted in increased susceptibility to B. cinerea. Analysis of the immune response of tobamovirus-infected plants revealed hyper-accumulation of endogenous salicylic acid (SA), upregulation of SA-responsive transcripts, and activation of SA-mediated immunity. Deficiency in SA biosynthesis decreased tobamovirus-mediated susceptibility to B. cinerea, while exogenous application of SA enhanced B. cinerea symptoms. These results suggest that tobamovirus-mediated accumulation of SA increases the plants' susceptibility to B. cinerea, and provide evidence for a new risk caused by tobamovirus infection in agriculture.
Collapse
Affiliation(s)
| | | | | | - Ziv Spiegelman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
4
|
Leibman-Markus M, Gupta R, Schuster S, Avni A, Bar M. Members of the tomato NRC4 h-NLR family augment each other in promoting basal immunity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111632. [PMID: 36758729 DOI: 10.1016/j.plantsci.2023.111632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/16/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Plants possess an efficient, two-tiered immune system to combat pathogens and pests. Several decades of research have characterized different features of these two well-known tiers, PTI and ETI (Pattern/ Effector-triggered Immunity). NLR (Nucleotide-binding domain Leucine-rich Repeat) receptors have been found to link PTI to ETI, and be required for full potentiation of plant immune responses in several systems. Intra-cellular helper-NLRs (h-NLRs) mediate ETI and have been focused on extensively in recent research. Previously, we investigated the roles of the h-NLR SlNRC4a in tomato immunity, finding that a specific mutation in this gene results in gain of function constitutive defense activation and broad disease resistance. Deletion of the entire NRC4 clade, which contains 3 genes, can compromise tomato immunity. Here, we decided to investigate the role of an additional clade member, SlNRC4b, in basal immunity. We generated a gain of function mutant in SlNRC4b using CRISPR-Cas9, as well as a double gain of function mutant in both genes. Similarly to the slnrc4a mutant, a slnrc4b mutant also possessed increased basal immunity and broad spectrum disease resistance. The double mutant displayed additive effects in some cases, with significant increases in resistance to fungal phytopathogens as compared with each of the single mutants. Our work confirms that the NRC4 family h-NLRs are important in the plant immune system, suggesting that this gene family has the potential to be promising in targeted agricultural adaptation in the Solanaceae family, promoting disease resistance and prevention of yield loss to pathogens.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, ARO, Volcani Institute, Rishon LeZion, Israel; School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, ARO, Volcani Institute, Rishon LeZion, Israel
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, ARO, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
5
|
Leibman-Markus M, Gupta R, Pizarro L, Bar M. The LeEIX Locus Determines Pathogen Resistance in Tomato. PHYTOPATHOLOGY 2023; 113:277-285. [PMID: 36044638 DOI: 10.1094/phyto-01-22-0035-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The mechanisms underlying the ability of plants to differentiate between pathogens and commensals in their environment are currently unresolved. It has been suggested that spatiotemporal regulation of pattern-recognition receptor (PRR) content could be one of the components providing plants with the ability to distinguish between pathogens and nonpathogenic microbes. The LeEIX PRRs recognize xylanases derived from beneficial or commensal plant colonizers of Trichoderma species, including the xylanase known as EIX. Here, we investigated possible general roles of PRRs from the LeEIX locus in immunity and pathogen resistance in tomato. Mutating the inhibitory PRR LeEIX1, or overexpressing the activating PRR LeEIX2, resulted in resistance to a wide range of pathogens and increased basal and elicited immunity. LeEIX1 knockout caused increases in the expression level of several tested PRRs, including FLS2, as well as bacterial pathogen resistance coupled with an increase in flg22-mediated immunity. The wild tomato relative Solanum pennellii contains inactive LeEIX PRR variants. S. pennellii does not respond to elicitation with the LeEIX PRR ligand EIX. Given that EIX is derived from a mostly nonpathogenic microbe, the connection of its PRRs to disease resistance has not previously been investigated directly. Here, we observed that compared with S. lycopersicum cultivar M82, S. pennellii was more sensitive to several fungal and bacterial pathogens. Our results suggest that the LeEIX locus might determine resistance to fungal necrotrophs, whereas the resistance to biotrophs is effected in combination with a gene/quantitative trait locus not within the LeEIX locus.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Lorena Pizarro
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
6
|
Leibman-Markus M, Schuster S, Vasquez-Soto B, Bar M, Avni A, Pizarro L. Dynamin-Related Proteins Enhance Tomato Immunity by Mediating Pattern Recognition Receptor Trafficking. MEMBRANES 2022; 12:membranes12080760. [PMID: 36005675 PMCID: PMC9415932 DOI: 10.3390/membranes12080760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Pattern recognition receptor (PRR) trafficking to the plasma membrane and endocytosis plays a crucial role in pattern triggered immunity (PTI). Dynamin-related proteins (DRPs) participate in endocytosis and recycling. In Arabidopsis, DRP1 and DRP2 are involved in plasma membrane scission during endocytosis. They are required for the PRR FLS2 endocytosis induction and PTI activation after elicitation with flg22, the MAMP recognized by FLS2. In tomato, SlDRP2A regulates the PRR LeEIX2 endocytosis and PTI activation in response to EIX, the MAMP recognized by LeEIX2. However, it is unknown if other DRPs participate in these processes. Taking advantage of bioinformatics tools, we selected SlDRP2B among the eight DRP2 tomato orthologues to study its functionality in trafficking and plant immunity. Through transient expression of SlDRP1B and its dominant-negative mutant on Nicotiana benthamiana and Nicotiana tabacum, we analyzed SlDRP1B function. We observed that SlDRP1B is physically associated with the LeEIX2 and modifies LeEIX2 trafficking, increasing its presence in endosomes. An enhancement of EIX-elicitated defense responses accompanies the role of SlDRP1B on LeEIX endocytosis. In addition, SlDRP1B overexpression enhanced flg22-elicited defense response. With these results, we conclude that SlDRP1B regulates PRR trafficking and, therefore, plant immunity, similarly to the SlDRP2A role.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Beatriz Vasquez-Soto
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Adi Avni
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Lorena Pizarro
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
- Correspondence: ; Tel.: +56-233-286-050
| |
Collapse
|
7
|
Verma RK, Teper D. Immune recognition of the secreted serine protease ChpG restricts the host range of Clavibacter michiganensis from eggplant varieties. MOLECULAR PLANT PATHOLOGY 2022; 23:933-946. [PMID: 35441490 PMCID: PMC9190982 DOI: 10.1111/mpp.13215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 05/06/2023]
Abstract
Bacterial wilt and canker caused by Clavibacter michiganensis (Cm) inflict considerable damage in tomato-growing regions around the world. Cm has a narrow host range and can cause disease in tomato but not in many eggplant varieties. The pathogenicity of Cm is dependent on secreted serine proteases, encoded by the chp/tomA pathogenicity island (PI), and the pCM2 plasmid. Screening combinations of PI deletion mutants and plasmid-cured strains found that Cm-mediated hypersensitive response (HR) in the Cm-resistant eggplant variety Black Queen is dependent on the chp/tomA PI. Singular reintroduction of PI-encoded serine proteases into Cm∆PI identified that the HR is elicited by the protease ChpG. Eggplant leaves infiltrated with a chpG marker exchange mutant (CmΩchpG) did not display an HR, and infiltration of purified ChpG protein elicited immune responses in eggplant but not in Cm-susceptible tomato. Virulence assays found that while wild-type Cm and the CmΩchpG complemented strain were nonpathogenic on eggplant, CmΩchpG caused wilt and canker symptoms. Additionally, bacterial populations in CmΩchpG-inoculated eggplant stem tissues were c.1000-fold higher than wild-type and CmΩchpG-complemented Cm strains. Pathogenicity tests conducted in multiple Cm-resistance eggplant varieties demonstrated that immunity to Cm is dependent on ChpG in all tested varieties, indicating that ChpG-recognition is conserved in eggplant. ChpG-mediated avirulence interactions were disabled by alanine substitution of serine231 of the serine protease catalytic triad, suggesting that protease activity is required for immune recognition of ChpG. Our study identified ChpG as a novel avirulence protein that is recognized in resistant eggplant varieties and restricts the host range of Cm.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteRishon LeZionIsrael
| | - Doron Teper
- Department of Plant Pathology and Weed ResearchAgricultural Research OrganizationVolcani InstituteRishon LeZionIsrael
| |
Collapse
|
8
|
Gupta R, Keppanan R, Leibman-Markus M, Rav-David D, Elad Y, Ment D, Bar M. The Entomopathogenic Fungi Metarhizium brunneum and Beauveria bassiana Promote Systemic Immunity and Confer Resistance to a Broad Range of Pests and Pathogens in Tomato. PHYTOPATHOLOGY 2022; 112:784-793. [PMID: 34636647 DOI: 10.1094/phyto-08-21-0343-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Biocontrol agents can control pathogens by reenforcing systemic plant resistance through systemic acquired resistance (SAR) or induced systemic resistance (ISR). Trichoderma spp. can activate the plant immune system through ISR, priming molecular mechanisms of defense against pathogens. Entomopathogenic fungi (EPF) can infect a wide range of arthropod pests and play an important role in reducing pests' population. Here, we investigated the mechanisms by which EPF control plant diseases. We tested two well studied EPF, Metarhizium brunneum isolate Mb7 and Beauveria bassiana as the commercial product Velifer, for their ability to induce systemic immunity and disease resistance against several fungal and bacterial phytopathogens, and their ability to promote plant growth. We compared the activity of these EPF to an established biocontrol agent, Trichoderma harzianum T39, a known inducer of systemic plant immunity and broad disease resistance. The three fungal agents were effective against several fungal and bacterial plant pathogens and arthropod pests. Our results indicate that EPF induce systemic plant immunity and disease resistance by activating the plant host defense machinery, as evidenced by increases in reactive oxygen species production and defense gene expression, and that EPF promote plant growth. EPF should be considered as control means for Tuta absoluta. We demonstrate that, with some exceptions, biocontrol in tomato can be equally potent by the tested EPF and T. harzianum T39, against both insect pests and plant pathogens. Taken together, our findings suggest that EPF may find use in broad-spectrum pest and disease management and as plant growth promoting agents.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Ravindran Keppanan
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dalia Rav-David
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
9
|
Gupta R, Elkabetz D, Leibman-Markus M, Jami E, Bar M. Cytokinin-microbiome interactions regulate developmental functions. ENVIRONMENTAL MICROBIOME 2022; 17:2. [PMID: 35033189 PMCID: PMC8760676 DOI: 10.1186/s40793-022-00397-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 01/05/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND The interaction of plants with the complex microbial networks that inhabit them is important for plant health. While the reliance of plants on their microbial inhabitants for defense against invading pathogens is well documented, the acquisition of data concerning the relationships between plant developmental stage or aging, and microbiome assembly, is still underway. The plant hormone cytokinin (CK) regulates various plant growth and developmental processes. Here, examining the relationships between plant development and microbiome assembly, we observed developmental-age dependent changes in the phyllopshere microbiome. We show that age-related shifts in microbiome content vary based on content of, or sensitivity to, CK. RESULTS We found a developmental age associated decline in microbial richness and diversity, accompanied by a decline in the presence of growth promoting and resistance inducing Bacilli in the phyllosphere. This decline was absent from CK-rich or CK-hypersensitive genotypes. Bacillus isolates we obtained from CK rich genotypes were found to alter the expression of developmental genes to support morphogenesis and alter the leaf developmental program when applied to seedlings, and enhance yield and agricultural productivity when applied to mature plants. CONCLUSIONS Our results support the notion that CK supports developmental functions in part via the bacterial community.
Collapse
Affiliation(s)
- Rupali Gupta
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Dorin Elkabetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
- Department of Plant Pathology and Microbiology, Hebrew University of Jerusalem, Rehovot, Israel
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Elie Jami
- Department of Ruminant Science, Animal Science Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel.
| |
Collapse
|
10
|
Anand G, Leibman-Markus M, Elkabetz D, Bar M. Method for the Production and Purification of Plant Immuno-Active Xylanase from Trichoderma. Int J Mol Sci 2021; 22:4214. [PMID: 33921693 PMCID: PMC8073006 DOI: 10.3390/ijms22084214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/12/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
Plants lack a circulating adaptive immune system to protect themselves against pathogens. Therefore, they have evolved an innate immune system based upon complicated and efficient defense mechanisms, either constitutive or inducible. Plant defense responses are triggered by elicitors such as microbe-associated molecular patterns (MAMPs). These components are recognized by pattern recognition receptors (PRRs) which include plant cell surface receptors. Upon recognition, PRRs trigger pattern-triggered immunity (PTI). Ethylene Inducing Xylanase (EIX) is a fungal MAMP protein from the plant-growth-promoting fungi (PGPF)-Trichoderma. It elicits plant defense responses in tobacco (Nicotiana tabacum) and tomato (Solanum lycopersicum), making it an excellent tool in the studies of plant immunity. Xylanases such as EIX are hydrolytic enzymes that act on xylan in hemicellulose. There are two types of xylanases: the endo-1, 4-β-xylanases that hydrolyze within the xylan structure, and the β-d-xylosidases that hydrolyze the ends of the xylan chain. Xylanases are mainly synthesized by fungi and bacteria. Filamentous fungi produce xylanases in high amounts and secrete them in liquid cultures, making them an ideal system for xylanase purification. Here, we describe a method for cost- and yield-effective xylanase production from Trichoderma using wheat bran as a growth substrate. Xylanase produced by this method possessed xylanase activity and immunogenic activity, effectively inducing a hypersensitive response, ethylene biosynthesis, and ROS burst.
Collapse
Affiliation(s)
- Gautam Anand
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion 50250, Israel; (G.A.); (M.L.-M.); (D.E.)
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion 50250, Israel; (G.A.); (M.L.-M.); (D.E.)
| | - Dorin Elkabetz
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion 50250, Israel; (G.A.); (M.L.-M.); (D.E.)
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 91905, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Plant Protection Institute, Agricultural Research Organization, Volcani Institute, Rishon LeZion 50250, Israel; (G.A.); (M.L.-M.); (D.E.)
| |
Collapse
|