1
|
Li Y, Stanojevic S, He B, Jing Z, Huang Q, Kang J, Garmire LX. Adding Highly Variable Genes to Spatially Variable Genes Can Improve Cell Type Clustering Performance in Spatial Transcriptomics Data. RESEARCH SQUARE 2024:rs.3.rs-5315913. [PMID: 39502778 PMCID: PMC11537352 DOI: 10.21203/rs.3.rs-5315913/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Spatial transcriptomics has allowed researchers to analyze transcriptome data in its tissue sample's spatial context. Various methods have been developed for detecting spatially variable genes (SV genes), whose gene expression over the tissue space shows strong spatial autocorrelation. Such genes are often used to define clusters in cells or spots downstream. However, highly variable (HV) genes, whose quantitative gene expressions show significant variation from cell to cell, are conventionally used in clustering analyses. In this report, we investigate whether adding highly variable genes to spatially variable genes can improve the cell type clustering performance in spatial transcriptomics data. We tested the clustering performance of HV genes, SV genes, and the union of both gene sets (concatenation) on over 50 real spatial transcriptomics datasets across multiple platforms, using a variety of spatial and non-spatial metrics. Our results show that combining HV genes and SV genes can improve overall cell-type clustering performance.
Collapse
Affiliation(s)
- Yijun Li
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Stefan Stanojevic
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Bing He
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Zheng Jing
- Department of Applied Statistics, University of Michigan, Ann Arbor, MI, USA
| | - Qianhui Huang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jian Kang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Lana X. Garmire
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Pospíšil J, Hrabovský M, Bohačiaková D, Hovádková Z, Jurásek M, Mlčoušková J, Paruch K, Nevolová Š, Damborsky J, Hampl A, Jaros J. Geometric Control of Cell Behavior by Biomolecule Nanodistribution. ACS Biomater Sci Eng 2022; 8:4789-4806. [PMID: 36202388 PMCID: PMC9667466 DOI: 10.1021/acsbiomaterials.2c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Many dynamic interactions within the cell microenvironment
modulate
cell behavior and cell fate. However, the pathways and mechanisms
behind cell–cell or cell–extracellular matrix interactions
remain understudied, as they occur at a nanoscale level. Recent progress
in nanotechnology allows for mimicking of the microenvironment at
nanoscale in vitro; electron-beam lithography (EBL)
is currently the most promising technique. Although this nanopatterning
technique can generate nanostructures of good quality and resolution,
it has resulted, thus far, in the production of only simple shapes
(e.g., rectangles) over a relatively small area (100 × 100 μm),
leaving its potential in biological applications unfulfilled. Here,
we used EBL for cell-interaction studies by coating cell-culture-relevant
material with electron-conductive indium tin oxide, which formed nanopatterns
of complex nanohexagonal structures over a large area (500 ×
500 μm). We confirmed the potential of EBL for use in cell-interaction
studies by analyzing specific cell responses toward differentially
distributed nanohexagons spaced at 1000, 500, and 250 nm. We found
that our optimized technique of EBL with HaloTags enabled the investigation
of broad changes to a cell-culture-relevant surface and can provide
an understanding of cellular signaling mechanisms at a single-molecule
level.
Collapse
Affiliation(s)
- Jakub Pospíšil
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.,Core Facility Cellular Imaging, CEITEC, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Miloš Hrabovský
- TESCAN Orsay Holding a.s., Libušina tř. 863, Brno 623 00, Czech Republic
| | - Dáša Bohačiaková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| | | | | | - Jarmila Mlčoušková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Kamil Paruch
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Šárka Nevolová
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment (RECETOX), Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| | - Josef Jaros
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic.,International Clinical Research Center (ICRC), St. Anne's University Hospital, Pekařská 53, Brno 656 91, Czech Republic
| |
Collapse
|