1
|
Wang Z, Liu J. Utilizing 13C-Labeled internal standards to advance the analysis of heparan sulfate. Am J Physiol Cell Physiol 2025; 328:C1091-C1100. [PMID: 39970186 DOI: 10.1152/ajpcell.00944.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/18/2024] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Heparan sulfate (HS) is a highly sulfated and structurally heterogeneous polysaccharide that plays key roles in numerous biological processes. Due to its complex structure and variable sulfation patterns, accurately characterizing and quantifying HS in biological samples poses significant analytical challenges. This review presents an advanced high-performance liquid chromatography-tandem mass spectroscopy (LC-MS/MS) methodology that utilizes isotope-labeled internal standards for the precise quantification of HS disaccharides and rare 3-O-sulfated tetrasaccharides, alongside monitoring 6-O-endosulfatase enzyme activity and the metabolism of synthetic HS oligosaccharides in biological systems. The combination of isotope-labeled standards with LC-MS/MS technology provides a powerful and sensitive approach for comprehensive analysis of HS modifications, offering valuable insights into HS metabolism and its alterations across various biological contexts.
Collapse
Affiliation(s)
- Zhangjie Wang
- Glycan Therapeutics Corp., Raleigh, North Carolina, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, United States
| |
Collapse
|
2
|
Wang Z, Benicky J, Mukherjee P, Laing J, Xu Y, Pagadala V, Wu S, Hippensteel JA, Goldman R, Liu J. Editor's Choice Development of a method to measure the activity of heparan sulfate 6-endosulfatase for biological research. Glycobiology 2025; 35:cwaf012. [PMID: 40044126 PMCID: PMC11892103 DOI: 10.1093/glycob/cwaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/17/2025] [Accepted: 03/02/2025] [Indexed: 03/12/2025] Open
Abstract
Heparan sulfate 6-endosulfatases (SULFs) remove 6-O-sulfo groups from heparan sulfate polysaccharide chains. SULFs modify the functions of heparan sulfate and contribute to the development of cancers, organ development and endothelial inflammatory responses. However, direct measurement of the activity of SULFs from human and mouse plasma is not currently possible. Here, we report a liquid chromatography coupled with tandem mass spectrometry (LS-MS/MS) assay to measure the activity of SULFs. The method uses a structurally homogeneous heparan sulfate dodecasaccharide (12-mer) in which the glucuronic and iduronic acid residues are labeled with both 13C- and 2H-atoms. The 12-mers desulfated by the SULFs is subjected to degradation with heparin lyases to yield disaccharides, which is followed by LC-MS/MS. The amount of two specific disaccharides, ΔIIIS and ΔIVS, quantified by LC-MS/MS reports the activity of the SULFs with high sensitivity and specificity. This method allows for the determination of the activity from conditioned cell media and mouse plasma. Our findings offer an essential novel tool to delineate many roles of SULFs in biological processes.
Collapse
Affiliation(s)
- Zhangjie Wang
- Glycan Therapeutics Corp, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Pritha Mukherjee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Justin Laing
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | | | - Shuangni Wu
- Glycan Therapeutics Corp, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University Medical Center, Washington, DC 20057, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| |
Collapse
|
3
|
Whitehead AK, Wang Z, Boustany RJ, Vivès RR, Lazartigues E, Liu J, Siggins RW, Yue X. Myeloid deficiency of heparan sulfate 6-O-endosulfatases impairs bone marrow hematopoiesis. Matrix Biol 2024; 134:107-118. [PMID: 39368561 PMCID: PMC11585435 DOI: 10.1016/j.matbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The heparan sulfate (HS) 6-O-endosulfatases or the Sulfs (Sulf1 and Sulf2) are the only known enzymes that can modify HS sulfation status extracellularly and have been shown to regulate diverse biological processes. The role of the Sulfs in bone marrow (BM) hematopoiesis is not known. In this study, we generated a novel mouse line with myeloid-specific deletion of the Sulfs by crossing Sulf1/2 double floxed mice with the LysM-cre line. The LysM-Sulf knockout (KO) male mice exhibited age-dependent expansion of hematopoietic stem cells and the granulocyte-monocyte lineages in the BM, whereas common lymphoid progenitors and B lymphocyte populations were significantly reduced. Although megakaryocytic and erythroid progenitors were not reduced in the BM, the LysM-Sulf KO males suffered age-dependent reduction of red blood cells (RBCs) and platelets in the peripheral blood, suggesting that the production of RBCs and platelets was arrested at later stages. In addition, LysM-Sulf KO males displayed progressive splenomegaly with extramedullary hematopoiesis. Compared to males, LysM-Sulf KO females exhibited a much-reduced phenotype, and ovariectomy had little effect. Mechanistically, reduced TGF-β/Smad2 but enhanced p53/p21 signaling were observed in male but not female LysM-Sulf KO mice. Finally, HS disaccharide analysis via LC-MS/MS revealed increased HS 6-O-sulfation in the BM from both male and female LysM-Sulf KO mice, however, the distribution of 6-O-sulfated motifs were different between the sexes with compensatory increase in Sulf1 expression observed only in LysM-Sulf KO females. In conclusion, our study reveals that myeloid deficiency of the Sulfs leads to multilineage abnormalities in BM hematopoiesis in an age- and sex-dependent manner.
Collapse
Affiliation(s)
- Anna K Whitehead
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | - Romain R Vivès
- University of Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Eric Lazartigues
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Robert W Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Xinping Yue
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
4
|
Stancanelli E, Green DE, Arnold K, Zhang J, Kong D, DeAngelis PL, Liu J. Utility of Authentic 13C-Labeled Disaccharide to Calibrate Hyaluronan Content Measurements by LC-MS. PROTEOGLYCAN RESEARCH 2024; 2:e70010. [PMID: 39583875 PMCID: PMC11582344 DOI: 10.1002/pgr2.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
Hyaluronan (hyaluronic acid, HA), a key glycosaminoglycan in the extracellular matrix, plays crucial roles in various physiological and pathological processes, including development, tissue hydration, inflammation, and tumor progression. Traditional methods for HA quantification, such as ELISA-like assays, often have limitations in sensitivity and specificity, particularly for lower molecular weight HA. In this work, we introduce a coupled liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method that employs a chemoenzymatically synthesized 13C-labeled lyase-derived authentic HA disaccharide calibrant for quantification of HA at the nanogram level. The method was validated against three HA polysaccharides with the sizes of ~33, 210, and 540 kDa. We applied this quantification technique to mouse tissues and plasma from both healthy and acetaminophen-induced acute liver injury mice. Our data revealed a ~75-fold increase in HA concentration in the liver of acetaminophen-injured mice with a concomitant depletion from plasma. Overall, our method offers a robust, universal, and highly sensitive tool for HA analysis in diverse biological samples that will advance the investigation of the roles of this polysaccharide in human disease conditions.
Collapse
Affiliation(s)
- Eduardo Stancanelli
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Dixy E. Green
- Department of Biochemistry and PhysiologyThe University of Oklahoma Health Science CenterOklahoma CityOklahomaUSA
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Jianxiang Zhang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Deyu Kong
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Paul L. DeAngelis
- Department of Biochemistry and PhysiologyThe University of Oklahoma Health Science CenterOklahoma CityOklahomaUSA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of PharmacyUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
5
|
Patel VN, Aure MH, Choi SH, Ball JR, Lane ED, Wang Z, Xu Y, Zheng C, Liu X, Martin D, Pailin JY, Prochazkova M, Kulkarni AB, van Kuppevelt TH, Ambudkar IS, Liu J, Hoffman MP. Specific 3-O-sulfated heparan sulfate domains regulate salivary gland basement membrane metabolism and epithelial differentiation. Nat Commun 2024; 15:7584. [PMID: 39217171 PMCID: PMC11365954 DOI: 10.1038/s41467-024-51862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024] Open
Abstract
Heparan sulfate (HS) regulation of FGFR function, which is essential for salivary gland (SG) development, is determined by the immense structural diversity of sulfated HS domains. 3-O-sulfotransferases generate highly 3-O-sulfated HS domains (3-O-HS), and Hs3st3a1 and Hs3st3b1 are enriched in myoepithelial cells (MECs) that produce basement membrane (BM) and are a growth factor signaling hub. Hs3st3a1;Hs3st3b1 double-knockout (DKO) mice generated to investigate 3-O-HS regulation of MEC function and growth factor signaling show loss of specific highly 3-O-HS and increased FGF/FGFR complex binding to HS. During development, this increases FGFR-, BM- and MEC-related gene expression, while in adult, it reduces MECs, increases BM and disrupts acinar polarity, resulting in salivary hypofunction. Defined 3-O-HS added to FGFR pulldown assays and primary organ cultures modulates FGFR signaling to regulate MEC BM synthesis, which is critical for secretory unit homeostasis and acinar function. Understanding how sulfated HS regulates development will inform the use of HS mimetics in organ regeneration.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Sophie H Choi
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - James R Ball
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ethan D Lane
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- Glycan Therapeutics Corp, Raleigh, NC, USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Changyu Zheng
- Translational Research Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Xibao Liu
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Daniel Martin
- NIDCD/NIDCR Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Jillian Y Pailin
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Michaela Prochazkova
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Ashok B Kulkarni
- Functional Genomics Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Indu S Ambudkar
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD, USA.
| |
Collapse
|
6
|
Zhang B, Bu C, Wang Q, Chen Q, Shi D, Qiu H, Wang Z, Liu J, Wang Z, Zhang Q, Chi L. Low molecular weight heparin promotes the PPAR pathway by protecting the glycocalyx of cells to delay the progression of diabetic nephropathy. J Biol Chem 2024; 300:107493. [PMID: 38925330 PMCID: PMC11301383 DOI: 10.1016/j.jbc.2024.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Diabetic nephropathy (DN) is one of the most important comorbidities for diabetic patients, which is the main factor leading to end-stage renal disease. Heparin analogs can delay the progression of DN, but the mechanism is not fully understood. In this study, we found that low molecular weight heparin therapy significantly upregulated some downstream proteins of the peroxisome proliferator-activated receptor (PPAR) signaling pathway by label-free quantification of the mouse kidney proteome. Through cell model verification, low molecular weight heparin can protect the heparan sulfate of renal tubular epithelial cells from being degraded by heparanase that is highly expressed in a high-glucose environment, enhance the endocytic recruitment of fatty acid-binding protein 1, a coactivator of the PPAR pathway, and then regulate the activation level of intracellular PPAR. In addition, we have elucidated for the first time the molecular mechanism of heparan sulfate and fatty acid-binding protein 1 interaction. These findings provide new insights into understanding the role of heparin in the pathogenesis of DN and developing corresponding treatments.
Collapse
Affiliation(s)
- Bin Zhang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Changkai Bu
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Qingchi Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Qingqing Chen
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Deling Shi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China
| | - Hongyan Qiu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zhe Wang
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Endocrinology & Geriatrics, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qunye Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Jinan, Shandong, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, Shandong, China; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Mukherjee P, Zhou X, Benicky J, Panigrahi A, Aljuhani R, Liu J, Ailles L, Pomin VH, Wang Z, Goldman R. Heparan-6- O-Endosulfatase 2 Promotes Invasiveness of Head and Neck Squamous Carcinoma Cell Lines in Co-Cultures with Cancer-Associated Fibroblasts. Cancers (Basel) 2023; 15:5168. [PMID: 37958342 PMCID: PMC10650326 DOI: 10.3390/cancers15215168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Local invasiveness of head and neck squamous cell carcinoma (HNSCC) is a complex phenomenon supported by interaction of the cancer cells with the tumor microenvironment (TME). We and others have shown that cancer-associated fibroblasts (CAFs) are a component of the TME that can promote local invasion in HNSCC and other cancers. Here we report that the secretory enzyme heparan-6-O-endosulfatase 2 (Sulf-2) directly affects the CAF-supported invasion of the HNSCC cell lines SCC35 and Cal33 into Matrigel. The Sulf-2 knockout (KO) cells differ from their wild type counterparts in their spheroid growth and formation, and the Sulf-2-KO leads to decreased invasion in a spheroid co-culture model with the CAF. Next, we investigated whether a fucosylated chondroitin sulfate isolated from the sea cucumber Holothuria floridana (HfFucCS) affects the activity of the Sulf-2 enzyme. Our results show that HfFucCS not only efficiently inhibits the Sulf-2 enzymatic activity but, like the Sulf-2 knockout, inhibits Matrigel invasion of SCC35 and Cal33 cells co-cultured with primary HNSCC CAF. These findings suggest that the heparan-6-O-endosulfatases regulate local invasion and could be therapeutically targeted with the inhibitory activity of a marine glycosaminoglycan.
Collapse
Affiliation(s)
- Pritha Mukherjee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; (P.M.); (X.Z.); (J.B.); (A.P.)
| | - Xin Zhou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; (P.M.); (X.Z.); (J.B.); (A.P.)
- Biotechnology Program, Northern Virginia Community College, Manassas, VA 20109, USA
| | - Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; (P.M.); (X.Z.); (J.B.); (A.P.)
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA;
| | - Aswini Panigrahi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; (P.M.); (X.Z.); (J.B.); (A.P.)
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA;
| | - Reem Aljuhani
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA;
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Vitor H. Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA;
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA
| | - Zhangjie Wang
- Glycan Therapeutics, LLC, 617 Hutton Street, Raleigh, NC 27606, USA;
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA; (P.M.); (X.Z.); (J.B.); (A.P.)
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, USA;
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC 20057, USA
| |
Collapse
|
8
|
Benicky J, Sanda M, Panigrahi A, Liu J, Wang Z, Pagadala V, Su G, Goldman R. A 6-O-endosulfatase activity assay based on synthetic heparan sulfate oligomers. Glycobiology 2023; 33:384-395. [PMID: 37052463 PMCID: PMC10243761 DOI: 10.1093/glycob/cwad026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Sulf-2 is an extracellular heparan 6-O-endosulfatase involved in the postsynthetic editing of heparan sulfate (HS), which regulates many important biological processes. The activity of the Sulf-2 and its substrate specificity remain insufficiently characterized in spite of more than two decades of studies of this enzyme. This is due, in part, to the difficulties in the production and isolation of this highly modified protein and due to the lack of well-characterized synthetic substrates for the probing of its catalytic activity. We introduce synthetic HS oligosaccharides to fill this gap, and we use our recombinant Sulf-2 protein to show that a paranitrophenol (pNP)-labeled synthetic oligosaccharide allows a reliable quantification of its enzymatic activity. The substrate and products of the desulfation reaction are separated by ion exchange high-pressure liquid chromatography and quantified by UV absorbance. This simple assay allows the detection of the Sulf-2 activity at high sensitivity (nanograms of the enzyme) and specificity. The method also allowed us to measure the heparan 6-O-endosulfatase activity in biological samples as complex as the secretome of cancer cell lines. Our in vitro measurements show that the N-glycosylation of the Sulf-2 enzyme affects the activity of the enzyme and that phosphate ions substantially decrease the Sulf-2 enzymatic activity. This assay offers an efficient, sensitive, and specific measurement of the heparan 6-O-endosulfatase activity that could open avenues to in vivo activity measurements and improve our understanding of the enzymatic editing of the sulfation of heparan.
Collapse
Affiliation(s)
- Julius Benicky
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
| | - Miloslav Sanda
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, United States
- Max-Planck-Institut fuer Herz- und Lungenforschung, Ludwigstrasse 43, Bad Nauheim 61231, Germany
| | - Aswini Panigrahi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | | | - Guowei Su
- Glycan Therapeutics, LLC, 617 Hutton Street, Raleigh, NC 27606, United States
| | - Radoslav Goldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, United States
- Clinical and Translational Glycoscience Research Center, Georgetown University, Washington, DC 20057, United States
- Department of Biochemistry and Molecular & Cell Biology, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
9
|
Wang Z, Patel VN, Song X, Xu Y, Kaminski AM, Doan VU, Su G, Liao Y, Mah D, Zhang F, Pagadala V, Wang C, Pedersen LC, Wang L, Hoffman MP, Gearing M, Liu J. Increased 3- O-sulfated heparan sulfate in Alzheimer's disease brain is associated with genetic risk gene HS3ST1. SCIENCE ADVANCES 2023; 9:eadf6232. [PMID: 37235665 PMCID: PMC10219595 DOI: 10.1126/sciadv.adf6232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
HS3ST1 is a genetic risk gene associated with Alzheimer's disease (AD) and overexpressed in patients, but how it contributes to the disease progression is unknown. We report the analysis of brain heparan sulfate (HS) from AD and other tauopathies using a LC-MS/MS method. A specific 3-O-sulfated HS displayed sevenfold increase in the AD group (n = 14, P < 0.0005). Analysis of the HS modified by recombinant sulfotransferases and HS from genetic knockout mice revealed that the specific 3-O-sulfated HS is made by 3-O-sulfotransferase isoform 1 (3-OST-1), which is encoded by the HS3ST1 gene. A synthetic tetradecasaccharide (14-mer) carrying the specific 3-O-sulfated domain displayed stronger inhibition for tau internalization than a 14-mer without the domain, suggesting that the 3-O-sulfated HS is used in tau cellular uptake. Our findings suggest that the overexpression of HS3ST1 gene may enhance the spread of tau pathology, uncovering a previously unidentified therapeutic target for AD.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vaishali N. Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Xuehong Song
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer’s Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea M. Kaminski
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Vivien Uyen Doan
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Guowei Su
- Glycan Therapeutics Corp., 617 Hutton Street, Raleigh, NC 27606, USA
| | - Yien Liao
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dylan Mah
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Lars C. Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Lianchun Wang
- Department of Molecular Pharmacology and Physiology, Byrd Alzheimer’s Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Arnold K, Wang Z, Lucas A, Zamboni W, Xu Y, Liu J. Investigation of the pharmacokinetic properties of synthetic heparan sulfate oligosaccharides. Glycobiology 2023; 33:104-114. [PMID: 36239422 PMCID: PMC9990981 DOI: 10.1093/glycob/cwac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/14/2022] Open
Abstract
Heparan sulfate (HS) is a sulfated polysaccharide with a wide range of biological activities. There is an increasing interest in the development of structurally homogeneous HS oligosaccharides as therapeutics. However, the factors influencing the pharmacokinetic properties of HS-based therapeutics remain unknown. Here, we report the pharmacokinetic properties of a panel of dodecasaccharides (12-mers) with varying sulfation patterns in healthy mice and uncover the pharmacokinetic properties of an octadecasaccharide (18-mer) in acutely injured mice. In the 12-mer panel, 1 12-mer, known as dekaparin, is anticoagulant, and 3 12-mers are nonanticoagulant. The concentrations of 12-mers in plasma and urine were determined by the disaccharide analysis using liquid chromatography coupled with tandem mass spectrometry. We observed a striking difference between anticoagulant and nonanticoagulant oligosaccharides in the 12-mer panel, showing that anticoagulant dekaparin had a 4.6-fold to 8.6-fold slower clearance and 4.4-fold to 8-fold higher plasma exposure compared to nonanticoagulant 12-mers. We also observed that the clearance of HS oligosaccharides is impacted by disease. Using an antiinflammatory 18-mer, we discovered that the clearance of 18-mer is reduced 2.8-fold in a liver failure mouse model compared to healthy mice. Our results suggest that oligosaccharides are rapidly cleared renally if they have low interaction with circulating proteins. We observed that the clearance rate of oligosaccharides is inversely associated with the degree of binding to target proteins, which can vary in response to pathophysiological conditions. Our findings uncover a contributing factor for the plasma and renal clearance of oligosaccharides which will aid the development of HS-based therapeutics.
Collapse
Affiliation(s)
- Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27514, United States
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27514, United States
| | - Andrew Lucas
- UNC Advanced Translational Pharmacology and Analytical Chemistry (ATPAC) Laboratory, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Institute of Nanomedicine, University of North Carolina, Chapel Hill, NC 27514, United States
| | - William Zamboni
- UNC Advanced Translational Pharmacology and Analytical Chemistry (ATPAC) Laboratory, UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Institute of Nanomedicine, University of North Carolina, Chapel Hill, NC 27514, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27514, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27514, United States
| |
Collapse
|
11
|
Ferreira A, Royaux I, Liu J, Wang Z, Su G, Moechars D, Callewaert N, De Muynck L. The 3-O sulfation of heparan sulfate proteoglycans contributes to the cellular internalization of tau aggregates. BMC Mol Cell Biol 2022; 23:61. [PMID: 36564747 PMCID: PMC9789671 DOI: 10.1186/s12860-022-00462-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Considering the high correlation between the functional decline in Alzheimer's disease (AD) and the propagation of aggregated tau protein, many research efforts are focused on determining the underlying molecular mechanisms of tau spreading. Heparan sulfate proteoglycans (HSPGs) were reported to mediate cellular uptake of tau aggregates. Specifically, the heparan sulfates (HS) sulfation plays a critical role in the interaction of HSPGs with aggregated tau. HS can be N-/2-O/6-O- or 3-O-sulfated, some of which have been reported to take part in the interaction with tau aggregates. However, the role of the 3-O sulfation remains enigmatic. RESULTS Here, we studied the contribution of HS 3-O sulfation in the binding and cellular uptake of tau aggregates. We observed reduced tau aggregates uptake in absence of 3-O sulfation or when outcompeting available cellular 3-O sulfated HS (3S-HS) with antithrombin III. The lack of HS3ST1-generated HS products in the HS3ST1-/- cells was further corroborated with an LC-MS/MS using 13C-labeled HS calibrants. Here, we showed that these functional changes can be explained by a higher affinity of aggregated tau to 3S-HS. When targeting tau aggregates with 3-O sulfation-containing HS, we observed an increase in inhibition of tau aggregates uptake. CONCLUSIONS These data indicate that HS 3-O sulfation plays a role in the binding of tau aggregates and, thus, contributes to their cellular uptake, highlighting a potential target value to modulate tau pathogenesis.
Collapse
Affiliation(s)
- Andreia Ferreira
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Ines Royaux
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Guowei Su
- Glycan Therapeutics, LLC, 617 Hutton Street, Raleigh, NC, USA
| | - Diederik Moechars
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium
| | - Nico Callewaert
- VIB Center for Medical Biotechnology, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Louis De Muynck
- Janssen Research & Development, a Division of Janssen Pharmaceutica N.V, 2340, Beerse, Belgium.
| |
Collapse
|
12
|
Furuya G, Katoh H, Atsumi S, Hashimoto I, Komura D, Hatanaka R, Senga S, Hayashi S, Akita S, Matsumura H, Miura A, Mita H, Nakakido M, Nagatoishi S, Sugiyama A, Suzuki R, Konishi H, Yamamoto A, Abe H, Hiraoka N, Aoki K, Kato Y, Seto Y, Yoshimura C, Miyadera K, Tsumoto K, Ushiku T, Ishikawa S. Nucleic acid-triggered tumoral immunity propagates pH-selective therapeutic antibodies through tumor-driven epitope spreading. Cancer Sci 2022; 114:321-338. [PMID: 36136061 PMCID: PMC9807517 DOI: 10.1111/cas.15596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023] Open
Abstract
Important roles of humoral tumor immunity are often pointed out; however, precise profiles of dominant antigens and developmental mechanisms remain elusive. We systematically investigated the humoral antigens of dominant intratumor immunoglobulin clones found in human cancers. We found that approximately half of the corresponding antigens were restricted to strongly and densely negatively charged polymers, resulting in simultaneous reactivities of the antibodies to both densely sulfated glycosaminoglycans (dsGAGs) and nucleic acids (NAs). These anti-dsGAG/NA antibodies matured and expanded via intratumoral immunological driving force of innate immunity via NAs. These human cancer-derived antibodies exhibited acidic pH-selective affinity across both antigens and showed specific reactivity to diverse spectrums of human tumor cells. The antibody-drug conjugate exerted therapeutic effects against multiple cancers in vivo by targeting cell surface dsGAG antigens. This study reveals that intratumoral immunological reactions propagate tumor-oriented immunoglobulin clones and demonstrates a new therapeutic modality for the universal treatment of human malignancies.
Collapse
Affiliation(s)
- Genta Furuya
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroto Katoh
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shinichiro Atsumi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Itaru Hashimoto
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Daisuke Komura
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ryo Hatanaka
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Shogo Senga
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Shuto Hayashi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shoji Akita
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Hirofumi Matsumura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Akihiro Miura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Hideaki Mita
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Makoto Nakakido
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Satoru Nagatoishi
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Akira Sugiyama
- Laboratory of Systems Biology and MedicineResearch Center for Advanced Science and Technology, The University of TokyoTokyoJapan
| | - Ryohei Suzuki
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroki Konishi
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Asami Yamamoto
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroyuki Abe
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Nobuyoshi Hiraoka
- Department of Analytical PathologyNational Cancer Center Research InstituteTokyoJapan
| | - Kazunori Aoki
- Division of Molecular and Cellular MedicineNational Cancer Center Research InstituteTokyoJapan
| | - Yasumasa Kato
- Department of Oral Function and Molecular BiologyOhu University School of DentistryFukushimaJapan
| | - Yasuyuki Seto
- Department of Gastrointestinal SurgeryGraduate School of Medicine, The University of TokyoTokyoJapan
| | - Chihoko Yoshimura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Kazutaka Miyadera
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., Ltd.IbarakiJapan
| | - Kouhei Tsumoto
- Laboratory of Medical Proteomics, Institute of Medical ScienceThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Shumpei Ishikawa
- Department of Preventive medicine, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
13
|
Francisco AB, Li J, Farghli AR, Kanke M, Shui B, Munn PR, Grenier JK, Soloway PD, Wang Z, Reid LM, Liu J, Sethupathy P. Chemical, Molecular, and Single-nucleus Analysis Reveal Chondroitin Sulfate Proteoglycan Aberrancy in Fibrolamellar Carcinoma. CANCER RESEARCH COMMUNICATIONS 2022; 2:663-678. [PMID: 36923282 PMCID: PMC10010304 DOI: 10.1158/2767-9764.crc-21-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
Fibrolamellar carcinoma (FLC) is an aggressive liver cancer with no effective therapeutic options. The extracellular environment of FLC tumors is poorly characterized and may contribute to cancer growth and/or metastasis. To bridge this knowledge gap, we assessed pathways relevant to proteoglycans, a major component of the extracellular matrix. We first analyzed gene expression data from FLC and nonmalignant liver tissue (n = 27) to identify changes in glycosaminoglycan (GAG) biosynthesis pathways and found that genes associated with production of chondroitin sulfate, but not other GAGs, are significantly increased by 8-fold. We then implemented a novel LC/MS-MS based method to quantify the abundance of different types of GAGs in patient tumors (n = 16) and found that chondroitin sulfate is significantly more abundant in FLC tumors by 6-fold. Upon further analysis of GAG-associated proteins, we found that versican (VCAN) expression is significantly upregulated at the mRNA and protein levels, the latter of which was validated by IHC. Finally, we performed single-cell assay for transposase-accessible chromatin sequencing on FLC tumors (n = 3), which revealed for the first time the different cell types in FLC tumors and also showed that VCAN is likely produced not only from FLC tumor epithelial cells but also activated stellate cells. Our results reveal a pathologic aberrancy in chondroitin (but not heparan) sulfate proteoglycans in FLC and highlight a potential role for activated stellate cells. Significance This study leverages a multi-disciplinary approach, including state-of-the-art chemical analyses and cutting-edge single-cell genomic technologies, to identify for the first time a marked chondroitin sulfate aberrancy in FLC that could open novel therapeutic avenues in the future.
Collapse
Affiliation(s)
- Adam B Francisco
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Alaa R Farghli
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Bo Shui
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Paul R Munn
- Genomics Innovation Hub, Biotechnology Resource Center, Cornell University, Ithaca, New York
| | - Jennifer K Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York.,Genomics Innovation Hub, Biotechnology Resource Center, Cornell University, Ithaca, New York
| | - Paul D Soloway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Zhangjie Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Lola M Reid
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York
| |
Collapse
|
14
|
Liu J, Pedersen LC. Emerging chemical and biochemical tools for studying 3- O-sulfated heparan sulfate. Am J Physiol Cell Physiol 2022; 322:C1166-C1175. [PMID: 35417268 PMCID: PMC9169821 DOI: 10.1152/ajpcell.00110.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
Abstract
Heparan sulfate is a widely expressed polysaccharide in the extracellular matrix and on the cell surface. 3-O-sulfated heparan sulfate represents only a small percentage of heparan sulfate from biological sources. However, this subpopulation is closely associated with biological functions of heparan sulfate. The 3-O-sulfated heparan sulfate is biosynthesized by heparan sulfate 3-O-sulfotransferase, which exists in seven different isoforms. This review article summarizes the recent progress in the substrate specificity studies of different 3-O-sulfotransferase isoforms involving the use of homogeneous oligosaccharide substrates and crystal structural analysis. The article also reviews a newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method to analyze the level of 3-O-sulfated heparan sulfate with high sensitivity and quantitative capability. This newly emerged technology will provide new tools to study the structure and function relationship of heparan sulfate.
Collapse
Affiliation(s)
- Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
15
|
Wang Z, Arnold K, Dhurandahare VM, Xu Y, Pagadala V, Labra E, Jeske W, Fareed J, Gearing M, Liu J. Analysis of 3- O-Sulfated Heparan Sulfate Using Isotopically Labeled Oligosaccharide Calibrants. Anal Chem 2022; 94:2950-2957. [PMID: 35107975 PMCID: PMC9006171 DOI: 10.1021/acs.analchem.1c04965] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The 3-O-sulfated glucosamine in heparan sulfate (HS) is a low-abundance structural component, but it is a key saccharide unit for the biological activities of HS. A method to determine the level of 3-O-sulfated HS is lacking. Here, we describe a LC-MS/MS based method to analyze the structural motifs. We determined the levels of 3-O-sulfated structural motifs from pharmaceutical heparin manufactured from bovine, porcine, and ovine. We discovered that saccharide chains carrying 3-O-sulfation from enoxaparin, an FDA-approved low-molecular weight heparin, displayed a slower clearance rate than non-3-O-sulfated sugar chains in a mouse model. Lastly, we detected the 3-O-sulfated HS from human brain. Furthermore, we found that a specific 3-O-sulfated structural motif, tetra-1, is elevated in the brain HS from Alzheimer's disease patients (n = 5, p = 0.0020). Our method offers a practical solution to measure 3-O-sulfated HS from biological sources with the sensitivity and quantitative capability.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Vijay M Dhurandahare
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Vijayakanth Pagadala
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Erick Labra
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Walter Jeske
- Cardiovascular Research Institute, Loyola University Chicago Health Sciences Division, Maywood, Illinois 60153, United States
| | - Jawed Fareed
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois 60153, United States
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| |
Collapse
|
16
|
Li J, Su G, Xu Y, Arnold K, Pagadala V, Wang C, Liu J. Synthesis of 3- O-Sulfated Heparan Sulfate Oligosaccharides Using 3- O-Sulfotransferase Isoform 4. ACS Chem Biol 2021; 16:2026-2035. [PMID: 34351732 DOI: 10.1021/acschembio.1c00474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparan sulfate (HS) 3-O-sulfotransferase isoform 4 (3-OST-4) is a specialized carbohydrate sulfotransferase participating in the biosynthesis of heparan sulfate. Here, we report the expression and purification of the recombinant 3-OST-4 enzyme and use it for the synthesis of a library of 3-O-sulfated hexasaccharides and 3-O-sulfated octasaccharides. The unique structural feature of the library is that each oligosaccharide contains a disaccharide domain with a 2-O-sulfated glucuronic acid (GlcA2S) and 3-O-sulfated glucosamine (GlcNS3S). By rearranging the order of the enzymatic modification steps, we demonstrate the synthesis of oligosaccharides with different saccharide sequences. The structural characterization was completed by electrospray ionization mass spectrometry and NMR. These 3-O-sulfated oligosaccharides show weak to very weak anti-Factor Xa activity, a measurement of anticoagulant activity. We discovered that HSoligo 7 (HS oligosaccharide 7), a 3-O-sulfated octasaccharide, binds to high mobility group box 1 protein (HMGB1) and tau protein, both believed to be involved in the process of inflammation. Access to the recombinant 3-OST-4 expands the capability of the chemoenzymatic method to synthesize novel 3-O-sulfated oligosaccharides. The oligosaccharides will become valuable reagents to probe the biological functions of 3-O-sulfated HS and to develop HS-based therapeutic agents.
Collapse
Affiliation(s)
- Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guowei Su
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Yongmei Xu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Vijayakanth Pagadala
- Glycan Therapeutics Corporation, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Chunyu Wang
- Department of Biological Sciences, Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
17
|
Preparation of Isotope-Enriched Heparan Sulfate Precursors for Structural Biology Studies. Methods Mol Biol 2021. [PMID: 34626392 DOI: 10.1007/978-1-0716-1398-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Heparan sulfate (HS) plays numerous important roles in biological systems through their interactions with a wide array of proteins. Structural biology studies of heparan sulfate are often challenging due to the heterogeneity and complexity of the HS molecules. Radioisotope metabolic labeling of HS in cellular systems has enabled the elucidation of HS structures as well as the interactions between HS and proteins. However, radiolabeled structures are not amenable for advanced structural glycobiology studies using sophisticated instruments such as nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). The utilization of stable isotope-enriched HS precursors is an appealing approach to overcome these challenges. The application of stable isotope-enriched HS precursors has facilitated the HS structural analysis by NMR spectroscopy and mass spectrometry. Herein we describe two simple methods to prepare isotopically enriched HS precursors and HS.
Collapse
|
18
|
Wang Z, Dhurandhare VM, Mahung CA, Arnold K, Li J, Su G, Xu D, Maile R, Liu J. Improving the Sensitivity for Quantifying Heparan Sulfate from Biological Samples. Anal Chem 2021; 93:11191-11199. [PMID: 34355888 PMCID: PMC8454094 DOI: 10.1021/acs.analchem.1c01761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heparan sulfates (HSs) are widely expressed glycans in the animal kingdom. HS plays a role in regulating cell differentiation/proliferation, embryonic development, blood coagulation, inflammatory response, and viral infection. The amount of HS and its structural information are critically important for investigating the functions of HS in vivo. A sensitive and reliable quantitative technique for the analysis of HS from biological samples is under development. Here, we report a new labeling reagent for HS disaccharides analysis, 6-amino-N-(2-diethylamino)ethyl quinoline-2-carboamide (AMQC). The AMQC-conjugated disaccharides are analyzed by LC-MS/MS in positive mode, significantly improving the sensitivity. The use of AMQC coupled with authentic 13C-labeled HS disaccharide internal standards empowered us to determine the amount and the disaccharide composition of the HS on a single histological slide. We used this method to profile the levels of HS in the plasma/serum and tissues/organs to assist the disease prognosis in two animal models, including the acetaminophen (APAP)-induced acute liver injury mouse model and the burn injury mouse model. The method may uncover the roles of HS contributing to the diseases as well as provide a potential new set of biomarkers for disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Vijay M Dhurandhare
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States.,Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Cressida A Mahung
- Department of Surgery, North Carolina Jaycee Burn Center, University of North Carolina, Chapel Hill, North Carolina 27599-7050, United States
| | - Katelyn Arnold
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Jine Li
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| | - Guowei Su
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States.,Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, United States
| | - Ding Xu
- Department of Oral Biology, School of Dental Medicine, The State University of New York at Buffalo, Buffalo, New York 14214, United States
| | - Rob Maile
- Department of Surgery, North Carolina Jaycee Burn Center, University of North Carolina, Chapel Hill, North Carolina 27599-7050, United States.,Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Curriculum of Toxicology and Environmental Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7325, United States
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7568, United States
| |
Collapse
|
19
|
Wang S, Liu D, Qu J, Zhu H, Chen C, Gibbons C, Greenway H, Wang P, Bollag RJ, Liu K, Li L. Streamlined Subclass-Specific Absolute Quantification of Serum IgG Glycopeptides Using Synthetic Isotope-Labeled Standards. Anal Chem 2021; 93:4449-4455. [PMID: 33630567 PMCID: PMC8715724 DOI: 10.1021/acs.analchem.0c04462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Absolute glycoproteomics quantification has drawn tremendous attention owing to its prospects in biomarker discovery and clinical implementation but is impeded by a general lack of suitable heavy isotope-labeled glycopeptide standards. In this study, we devised a facile chemoenzymatic strategy to synthesize a total of 36 human IgG glycopeptides attached with well-defined glycoforms, including 15 isotope-labeled ones with a mass increment of 6 Da to their native counterparts. Spiking of these standards into human sera enabled simplified, robust, and precise absolute quantification of IgG glycopeptides in a subclass-specific fashion. Additionally, the implementation of the absolute quantification approach revealed subclass-dependent alteration of serum IgG galactosylation and sialylation in colon cancer samples.
Collapse
Affiliation(s)
- Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jingyao Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - He Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Harmon Greenway
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Peng Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Roni J Bollag
- Department of Pathology, Augusta University, Augusta, Georgia 30912, United States
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
20
|
Wang Z, Arnold K, Dhurandhare VM, Xu Y, Liu J. Investigation of the biological functions of heparan sulfate using a chemoenzymatic synthetic approach. RSC Chem Biol 2021; 2:702-712. [PMID: 34179782 PMCID: PMC8190904 DOI: 10.1039/d0cb00199f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Heparan sulfate (HS) is a highly sulfated polysaccharide playing essential physiological and pathophysiological roles in the animal kingdom. Heparin, a highly sulfated form of HS, is a widely used anticoagulant drug. Isolated from biological sources, both heparin and HS are polysaccharide mixtures with different sugar chain lengths and sulfation patterns. Structural heterogeneity of HS complicates the investigation of HS-related biological activities. The availability of structurally defined HS oligosaccharides is critical in understanding the contribution of saccharide structures to the functions. The chemoenzymatic synthetic approach is emerging as a cost-effective method to synthesize HS oligosaccharides. Structurally defined oligosaccharides are now widely available for biologists. This review summarizes our efforts in using this new synthetic method to develop new anticoagulant therapeutics and discover the role of HS to protect liver damage under pathological conditions. The synthetic method also allows us to prepare reference saccharide standards to improve structural analysis of HS.
Collapse
Affiliation(s)
- Zhangjie Wang
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Katelyn Arnold
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Vijay Manohar Dhurandhare
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Yongmei Xu
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| | - Jian Liu
- Division of Medicinal Chemistry and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina Chapel Hill North Carolina USA
| |
Collapse
|