1
|
Sweet AD, Doña J, Johnson KP. Biogeographic History of Pigeons and Doves Drives the Origin and Diversification of Their Parasitic Body Lice. Syst Biol 2025; 74:198-214. [PMID: 39037176 DOI: 10.1093/sysbio/syae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 07/23/2024] Open
Abstract
Despite their extensive diversity and ecological importance, the history of diversification for most groups of parasitic organisms remains relatively understudied. Elucidating broad macroevolutionary patterns of parasites is challenging, often limited by the availability of samples, genetic resources, and knowledge about ecological relationships with their hosts. In this study, we explore the macroevolutionary history of parasites by focusing on parasitic body lice from doves. Building on extensive knowledge of ecological relationships and previous phylogenomic studies of their avian hosts, we tested specific questions about the evolutionary origins of the body lice of doves, leveraging whole genome data sets for phylogenomics. Specifically, we sequenced whole genomes from 68 samples of dove body lice, including representatives of all body louse genera from 51 host taxa. From these data, we assembled > 2300 nuclear genes to estimate dated phylogenetic relationships among body lice and several outgroup taxa. The resulting phylogeny of body lice was well supported, although some branches had conflicting signals across the genome. We then reconstructed ancestral biogeographic ranges of body lice and compared the body louse phylogeny to the phylogeny of doves, and also to a previously published phylogeny of the wing lice of doves. Divergence estimates placed the origin of body lice in the late Oligocene. Body lice likely originated in Australasia and dispersed with their hosts during the early Miocene, with subsequent codivergence and host switching throughout the world. Notably, this evolutionary history is very similar to that of dove wing lice, despite the stronger dispersal capabilities of wing lice compared to body lice. Our results highlight the central role of the biogeographic history of host organisms in driving the evolutionary history of their parasites across time and geographic space.
Collapse
Affiliation(s)
- Andrew D Sweet
- Department of Biological Sciences, Arkansas State University, PO Box 599, State University, AR 72467, USA
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak St., Champaign, IL 61820, USA
- Departamento de Zoología, Universidad de Granada, Avenida de la Fuente Nueva S/N, Granada 18071, Spain
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak St., Champaign, IL 61820, USA
| |
Collapse
|
2
|
Doña J, Johnson KP. Host body size, not host population size, predicts genome-wide effective population size of parasites. Evol Lett 2023; 7:285-292. [PMID: 37475749 PMCID: PMC10355176 DOI: 10.1093/evlett/qrad026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/19/2023] [Accepted: 05/18/2023] [Indexed: 07/22/2023] Open
Abstract
The effective population size (Ne) of an organism is expected to be generally proportional to the total number of individuals in a population. In parasites, we might expect the effective population size to be proportional to host population size and host body size, because both are expected to increase the number of parasite individuals. However, among other factors, parasite populations are sometimes so extremely subdivided that high levels of inbreeding may distort these predicted relationships. Here, we used whole-genome sequence data from dove parasites (71 feather louse species of the genus Columbicola) and phylogenetic comparative methods to study the relationship between parasite effective population size and host population size and body size. We found that parasite effective population size is largely explained by host body size but not host population size. These results suggest the potential local population size (infrapopulation or deme size) is more predictive of the long-term effective population size of parasites than is the total number of potential parasite infrapopulations (i.e., host individuals).
Collapse
Affiliation(s)
- Jorge Doña
- Corresponding authors: Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, United States.
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, United States.
| |
Collapse
|
3
|
Johnson KP. Genomic Approaches to Uncovering the Coevolutionary History of Parasitic Lice. Life (Basel) 2022; 12:life12091442. [PMID: 36143478 PMCID: PMC9501036 DOI: 10.3390/life12091442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary New sequencing technologies have now made it possible to sequence entire genomes for a diversity of life on earth. Parasites comprise nearly half of all species. Lice are one important group of parasites of birds and mammals, including humans. Genome sequencing approaches have been applied to this group of parasites to uncover patterns of diversification. These patterns can be compared to the patterns of diversification in their hosts. Key findings from these studies have revealed that parasitic lice likely originated on birds and then switched to mammals multiple times. Within groups of birds and mammals, the evolutionary trees of lice match those for mammal hosts more than those for birds. Genomic approaches have also revealed that individual birds and mammals harbor distinct populations of lice. Thus, these new techniques allow for the study of patterns of diversification at a wide variety of scales. Abstract Next-generation sequencing technologies are revolutionizing the fields of genomics, phylogenetics, and population genetics. These new genomic approaches have been extensively applied to a major group of parasites, the lice (Insecta: Phthiraptera) of birds and mammals. Two louse genomes have been assembled and annotated to date, and these have opened up new resources for the study of louse biology. Whole genome sequencing has been used to assemble large phylogenomic datasets for lice, incorporating sequences of thousands of genes. These datasets have provided highly supported trees at all taxonomic levels, ranging from relationships among the major groups of lice to those among closely related species. Such approaches have also been applied at the population scale in lice, revealing patterns of population subdivision and inbreeding. Finally, whole genome sequence datasets can also be used for additional study beyond that of the louse nuclear genome, such as in the study of mitochondrial genome fragmentation or endosymbiont function.
Collapse
Affiliation(s)
- Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA
| |
Collapse
|
4
|
Doña J, Virrueta Herrera S, Nyman T, Kunnasranta M, Johnson KP. Patterns of Microbiome Variation Among Infrapopulations of Permanent Bloodsucking Parasites. Front Microbiol 2021; 12:642543. [PMID: 33935998 PMCID: PMC8085356 DOI: 10.3389/fmicb.2021.642543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
While interspecific variation in microbiome composition can often be readily explained by factors such as host species identity, there is still limited knowledge of how microbiomes vary at scales lower than the species level (e.g., between individuals or populations). Here, we evaluated variation in microbiome composition of individual parasites among infrapopulations (i.e., populations of parasites of the same species living on a single host individual). To address this question, we used genome-resolved and shotgun metagenomic data of 17 infrapopulations (balanced design) of the permanent, bloodsucking seal louse Echinophthirius horridus sampled from individual Saimaa ringed seals Pusa hispida saimensis. Both genome-resolved and read-based metagenomic classification approaches consistently show that parasite infrapopulation identity is a significant factor that explains both qualitative and quantitative patterns of microbiome variation at the intraspecific level. This study contributes to the general understanding of the factors driving patterns of intraspecific variation in microbiome composition, especially of bloodsucking parasites, and has implications for understanding how well-known processes occurring at higher taxonomic levels, such as phylosymbiosis, might arise in these systems.
Collapse
Affiliation(s)
- Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Departamento de Biología Animal, Universidad de Granada, Granada, Spain
| | - Stephany Virrueta Herrera
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| | - Mervi Kunnasranta
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.,Natural Resources Institute Finland, Joensuu, Finland
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
5
|
Doña J, Sweet AD, Johnson KP. Comparing rates of introgression in parasitic feather lice with differing dispersal capabilities. Commun Biol 2020; 3:610. [PMID: 33097824 PMCID: PMC7584577 DOI: 10.1038/s42003-020-01345-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Organisms vary in their dispersal abilities, and these differences can have important biological consequences, such as impacting the likelihood of hybridization events. However, there is still much to learn about the factors influencing hybridization, and specifically how dispersal ability affects the opportunities for hybridization. Here, using the ecological replicate system of dove wing and body lice (Insecta: Phthiraptera), we show that species with higher dispersal abilities exhibited increased genomic signatures of introgression. Specifically, we found a higher proportion of introgressed genomic reads and more reticulated phylogenetic networks in wing lice, the louse group with higher dispersal abilities. Our results are consistent with the hypothesis that differences in dispersal ability might drive the extent of introgression through hybridization. Jorge Doña, Andrew Sweet and Kevin Johnson find that dove lice species with higher dispersal abilities have stronger genomic signatures of introgression. By using sequence data from multiple species of both wing and body lice from the same species of hosts, the authors are able to control for nearly all factors besides dispersal ability, demonstrating the power of this study system.
Collapse
Affiliation(s)
- Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA. .,Departamento de Biología Animal, Universidad de Granada, 18001, Granada, Spain.
| | - Andrew D Sweet
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA.,Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN, 47907, USA
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois at Urbana-Champaign, 1816 S. Oak St., Champaign, IL, 61820, USA.
| |
Collapse
|