1
|
Fayed B, Luo S, Yassin AEB. Challenges and recent advances in erythropoietin stability. Pharm Dev Technol 2024; 29:930-944. [PMID: 39340397 DOI: 10.1080/10837450.2024.2410448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Erythropoietin (EPO) is a pivotal hormone that regulates red blood cell production, predominantly synthesized by the kidneys and also produced by the liver. Since the introduction of recombinant human EPO (rh-EPO) in 1989 through recombinant DNA technology, the therapeutic landscape for anemia has been improved. rh-EPO's market expansion has been substantial, with its application extending across various conditions such as chronic kidney disease, cancer-related anemia, and other disorders. Despite its success, significant concerns remain regarding the stability of EPO, which is critical for preserving its biological activity and ensuring therapeutic efficacy under diverse environmental conditions. Instability issues, including degradation and loss of biological activity, challenge both drug development and treatment outcomes. Factors contributing to EPO instability include temperature fluctuations, light exposure, and interactions with other substances. To overcome these challenges, pharmaceutical research has focused on developing innovative strategies such as stabilizing agents, advanced formulation techniques, and optimized storage conditions. This review article explores the multifaceted aspects of EPO stability, examining the impact of instability on clinical efficacy and drug development. It also provides a comprehensive review of current stabilization strategies, including the use of excipients, lyophilization, and novel delivery systems.
Collapse
Affiliation(s)
- Bahgat Fayed
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Alaa Eldeen B Yassin
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Herman X, Far J, Peeters M, Quinton L, Chaumont F, Navarre C. In vivo deglycosylation of recombinant glycoproteins in tobacco BY-2 cells. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1773-1784. [PMID: 37266972 PMCID: PMC10440984 DOI: 10.1111/pbi.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/21/2023] [Accepted: 04/29/2023] [Indexed: 06/03/2023]
Abstract
Production of recombinant pharmaceutical glycoproteins has been carried out in multiple expression systems. However, N-glycosylation, which increases heterogeneity and raises safety concerns due to the presence of non-human residues, is usually not controlled. The presence and composition of N-glycans are also susceptible to affect protein stability, function and immunogenicity. To tackle these issues, we are developing glycoengineered Nicotiana tabacum Bright Yellow-2 (BY-2) cell lines through knock out and ectopic expression of genes involved in the N-glycosylation pathway. Here, we report on the generation of BY-2 cell lines producing deglycosylated proteins. To this end, endoglycosidase T was co-expressed with an immunoglobulin G or glycoprotein B of human cytomegalovirus in BY-2 cell lines producing only high mannose N-glycans. Endoglycosidase T cleaves high mannose N-glycans to generate single, asparagine-linked, N-acetylglucosamine residues. The N-glycosylation profile of the secreted antibody was determined by mass spectrometry analysis. More than 90% of the N-glycans at the conserved Asn297 site were deglycosylated. Likewise, extensive deglycosylation of glycoprotein B, which possesses 18 N-glycosylation sites, was observed. N-glycan composition of gB glycovariants was assessed by in vitro enzymatic mobility shift assay and proven to be consistent with the expected glycoforms. Comparison of IgG glycovariants by differential scanning fluorimetry revealed a significant impact of the N-glycosylation pattern on the thermal stability. Production of deglycosylated pharmaceutical proteins in BY-2 cells expands the set of glycoengineered BY-2 cell lines.
Collapse
Affiliation(s)
- Xavier Herman
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Johann Far
- Mass Spectrometry Laboratory‐MolSys Research UnitULiegeLiègeBelgium
| | - Marie Peeters
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Loïc Quinton
- Mass Spectrometry Laboratory‐MolSys Research UnitULiegeLiègeBelgium
| | - François Chaumont
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| | - Catherine Navarre
- Louvain Institute of Biomolecular Science and TechnologyUCLouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
3
|
Bertokova A, Bertok T, Jane E, Hires M, Ďubjaková P, Novotná O, Belan V, Fillo J, Tkac J. Detection of N,N-diacetyllactosamine (LacdiNAc) containing free prostate-specific antigen for early stage prostate cancer diagnostics and for identification of castration-resistant prostate cancer patients. Bioorg Med Chem 2021; 39:116156. [PMID: 33894508 DOI: 10.1016/j.bmc.2021.116156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is one of the most common cancer types among men and also acommon cause of death globally. With an increasing incidence, there is aneed for low-cost, reliable biomarkers present in samples, which could be provided non-invasively (without a need to perform prostate biopsy). Glycosylation changes of free-PSA (fPSA) are considered cancer-specific, while the level of different PSA forms can increase under other than cancerous conditions. In the present study, we investigated the role ofN,N-diacetyllactosamine (LacdiNAc) epitope of fPSA (i.e. glycoprofile of fPSA or gPSA) in combination with total-PSA (tPSA), prostate volume, and tPSA density (tPSA level divided by prostate volume i.e. PSAd) as biomarkers for monitoring of PCa development and progression in 105 men. Furthermore, we applied an genetic (evolutionary) algorithm to identify any suspicious individuals in abenign cohort having benign prostatic hyperplasia (BPH). We identified 3 suspicious men originally diagnosed with BPH using gPSA analysis. In thefollow-up we found out that two men should not be considered as BPH patients since multiparametric magnetic resonance imaging (mpMRI) identified one man with clinically significant PCa via Prostate Imaging - Reporting and Data System (PI RADS v2 = 4) and the second man was with High-gradeprostatic intraepithelial neoplasia (HG PIN), commonly described as apre-cancerous stage. Moreover, in the study we described for the first time that changed LacdiNAc on PSA can be applied to identify prostatitis patients and most importantly this is the first study suggesting that changed glycosylation on PSA can be applied to identify castration-resistant prostate cancer (CRPCa) patients.
Collapse
Affiliation(s)
- Aniko Bertokova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovakia; Glycanostics, Ltd., Dubravska cesta 9, Bratislava 845 38, Slovakia
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovakia; Glycanostics, Ltd., Dubravska cesta 9, Bratislava 845 38, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovakia
| | - Petra Ďubjaková
- University Hospital Bratislava, Mickiewiczova 13, 811 07 Bratislava, Slovakia
| | - Oľga Novotná
- University Hospital Bratislava, Mickiewiczova 13, 811 07 Bratislava, Slovakia
| | | | - Juraj Fillo
- University Hospital Bratislava, Mickiewiczova 13, 811 07 Bratislava, Slovakia
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovakia; Glycanostics, Ltd., Dubravska cesta 9, Bratislava 845 38, Slovakia.
| |
Collapse
|