1
|
Beneker O, Molinaro L, Guellil M, Sasso S, Kabral H, Bonucci B, Gaens N, D'Atanasio E, Mezzavilla M, Delbrassine H, Braet L, Lambert B, Deckers P, Biagini SA, Hui R, Becelaere S, Geypen J, Hoebreckx M, Berk B, Driesen P, Pijpelink A, van Damme P, Vanhoutte S, De Winter N, Saag L, Pagani L, Tambets K, Scheib CL, Larmuseau MHD, Kivisild T. Urbanization and genetic homogenization in the medieval Low Countries revealed through a ten-century paleogenomic study of the city of Sint-Truiden. Genome Biol 2025; 26:127. [PMID: 40390081 PMCID: PMC12090598 DOI: 10.1186/s13059-025-03580-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/16/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Processes shaping the formation of the present-day population structure in highly urbanized Northern Europe are still poorly understood. Gaps remain in our understanding of when and how currently observable regional differences emerged and what impact city growth, migration, and disease pandemics during and after the Middle Ages had on these processes. RESULTS We perform low-coverage sequencing of the genomes of 338 individuals spanning the eighth to the eighteenth centuries in the city of Sint-Truiden in Flanders, in the northern part of Belgium. The early/high medieval Sint-Truiden population was more heterogeneous, having received migrants from Scotland or Ireland, and displayed less genetic relatedness than observed today between individuals in present-day Flanders. We find differences in gene variants associated with high vitamin D blood levels between individuals with Gaulish or Germanic ancestry. Although we find evidence of a Yersinia pestis infection in 5 of the 58 late medieval burials, we were unable to detect a major population-scale impact of the second plague pandemic on genetic diversity or on the elevated differentiation of immunity genes. CONCLUSIONS This study reveals that the genetic homogenization process in a medieval city population in the Low Countries was protracted for centuries. Over time, the Sint-Truiden population became more similar to the current population of the surrounding Limburg province, likely as a result of reduced long-distance migration after the high medieval period, and the continuous process of local admixture of Germanic and Gaulish ancestries which formed the genetic cline observable today in the Low Countries.
Collapse
Affiliation(s)
- Owyn Beneker
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
| | | | - Meriam Guellil
- Department for Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Stefania Sasso
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Noah Gaens
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | | | - Linde Braet
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Bart Lambert
- SHOC Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Simone Andrea Biagini
- Department of Archaeology and Museology, Masaryk University, Brno, Czech Republic
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | | | - Sara Becelaere
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | | | | | - Birgit Berk
- Birgit Berk Fysische Anthropologie, Meerssen, Netherlands
| | | | - April Pijpelink
- Crematie en Inhumatie Analyse (CRINA) Fysische Antropologie, 's-Hertogenbosch, Netherlands
| | - Philip van Damme
- Department of Neurology, University Hospitals Leuven and Department of Neuroscience, KU Leuven, Leuven, Belgium
| | | | | | - Lehti Saag
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luca Pagani
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Higgins OA, Modi A, Cannariato C, Diroma MA, Lugli F, Ricci S, Zaro V, Vai S, Vazzana A, Romandini M, Yu H, Boschin F, Magnone L, Rossini M, Di Domenico G, Baruffaldi F, Oxilia G, Bortolini E, Dellù E, Moroni A, Ronchitelli A, Talamo S, Müller W, Calattini M, Nava A, Posth C, Lari M, Bondioli L, Benazzi S, Caramelli D. Life history and ancestry of the late Upper Palaeolithic infant from Grotta delle Mura, Italy. Nat Commun 2024; 15:8248. [PMID: 39304646 PMCID: PMC11415373 DOI: 10.1038/s41467-024-51150-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/30/2024] [Indexed: 09/22/2024] Open
Abstract
The biological aspects of infancy within late Upper Palaeolithic populations and the role of southern refugia at the end of the Last Glacial Maximum are not yet fully understood. This study presents a multidisciplinary, high temporal resolution investigation of an Upper Palaeolithic infant from Grotta delle Mura (Apulia, southern Italy) combining palaeogenomics, dental palaeohistology, spatially-resolved geochemical analyses, direct radiocarbon dating, and traditional anthropological studies. The skeletal remains of the infant - Le Mura 1 - were directly dated to 17,320-16,910 cal BP. The results portray a biological history of the infant's development, early life, health and death (estimated at ~72 weeks). They identify, several phenotypic traits and a potential congenital disease in the infant, the mother's low mobility during gestation, and a high level of endogamy. Furthermore, the genomic data indicates an early spread of the Villabruna-like components along the Italian peninsula, confirming a population turnover around the time of the Last Glacial Maximum, and highlighting a general reduction in genetic variability from northern to southern Italy. Overall, Le Mura 1 contributes to our better understanding of the early stages of life and the genetic puzzle in the Italian peninsula at the end of the Last Glacial Maximum.
Collapse
Affiliation(s)
- Owen Alexander Higgins
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy.
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy.
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence, Italy.
| | | | | | - Federico Lugli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Stefano Ricci
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Valentina Zaro
- Department of Biology, University of Florence, Florence, Italy
| | - Stefania Vai
- Department of Biology, University of Florence, Florence, Italy
| | - Antonino Vazzana
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Matteo Romandini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - He Yu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Francesco Boschin
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Luigi Magnone
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Matteo Rossini
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | | | - Fabio Baruffaldi
- Laboratory of Medical Technology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gregorio Oxilia
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Elena Dellù
- Institute Villa Adriana e Villa d'Este, Superintendence of Archeology, Fine Arts and Landscape for the metropolitan city of Bari - Ministry of Culture, Bari, Italy
| | - Adriana Moroni
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Annamaria Ronchitelli
- Department of Physical Sciences, Earth and Environment - RU of Prehistory and Anthropology, University of Siena, Siena, Italy
| | - Sahra Talamo
- Department of Chemistry G. Ciamician, University of Bologna, Bologna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Wolfgang Müller
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
- Frankfurt Isotope and Element Research Center (FIERCE), Goethe University Frankfurt, Frankfurt, Frankfurt am Main, Germany
| | - Mauro Calattini
- Department of History and Cultural Heritage, University of Siena, Siena, Italy
| | - Alessia Nava
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Cosimo Posth
- Archaeo- and Palaeogenetics, Institute for Archaeological Sciences, Department of Geosciences, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen, Tübingen, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence, Italy
| | - Luca Bondioli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Department of Cultural Heritage, University of Padua, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
3
|
Vallini L, Zampieri C, Shoaee MJ, Bortolini E, Marciani G, Aneli S, Pievani T, Benazzi S, Barausse A, Mezzavilla M, Petraglia MD, Pagani L. The Persian plateau served as hub for Homo sapiens after the main out of Africa dispersal. Nat Commun 2024; 15:1882. [PMID: 38528002 DOI: 10.1038/s41467-024-46161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
A combination of evidence, based on genetic, fossil and archaeological findings, indicates that Homo sapiens spread out of Africa between ~70-60 thousand years ago (kya). However, it appears that once outside of Africa, human populations did not expand across all of Eurasia until ~45 kya. The geographic whereabouts of these early settlers in the timeframe between ~70-60 to 45 kya has been difficult to reconcile. Here we combine genetic evidence and palaeoecological models to infer the geographic location that acted as the Hub for our species during the early phases of colonisation of Eurasia. Leveraging on available genomic evidence we show that populations from the Persian Plateau carry an ancestry component that closely matches the population that settled the Hub outside Africa. With the paleoclimatic data available to date, we built ecological models showing that the Persian Plateau was suitable for human occupation and that it could sustain a larger population compared to other West Asian regions, strengthening this claim.
Collapse
Affiliation(s)
| | - Carlo Zampieri
- Department of Biology, University of Padova, Padova, Italy
| | - Mohamed Javad Shoaee
- Department of Archaeology, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Eugenio Bortolini
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Giulia Marciani
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Serena Aneli
- Department of Public Health Sciences and Pediatrics, University of Turin, Turin, Italy
| | - Telmo Pievani
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Bologna, Italy
| | - Alberto Barausse
- Department of Biology, University of Padova, Padova, Italy
- Department of Industrial Engineering, University of Padova, Padova, Italy
| | | | - Michael D Petraglia
- Human Origins Program, Smithsonian Institution, Washington, DC, 20560, USA
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Centre for Human Evolution, Griffith University, Brisbane, QLD, Australia
| | - Luca Pagani
- Department of Biology, University of Padova, Padova, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
4
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Fewlass H, Zavala EI, Fagault Y, Tuna T, Bard E, Hublin JJ, Hajdinjak M, Wilczyński J. Chronological and genetic analysis of an Upper Palaeolithic female infant burial from Borsuka Cave, Poland. iScience 2023; 26:108283. [PMID: 38047066 PMCID: PMC10690573 DOI: 10.1016/j.isci.2023.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 12/05/2023] Open
Abstract
Six infant human teeth and 112 animal tooth pendants from Borsuka Cave were identified as the oldest burial in Poland. However, uncertainties around the dating and the association of the teeth to the pendants have precluded their association with an Upper Palaeolithic archaeological industry. Using <67 mg per tooth, we combined dating and genetic analyses of two human teeth and six herbivore tooth pendants to address these questions. Our interdisciplinary approach yielded informative results despite limited sampling material, and high levels of degradation and contamination. Our results confirm the Palaeolithic origin of the human remains and herbivore pendants, and permit us to identify the infant as female and discuss the association of the assemblage with different Palaeolithic industries. This study exemplifies the progress that has been made toward minimally destructive methods and the benefits of integrating methods to maximize data retrieval from precious but highly degraded and contaminated prehistoric material.
Collapse
Affiliation(s)
- Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Ancient Genomics Lab, Francis Crick Institute, London NW1 1AT, UK
| | - Elena I. Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Department of Cell and Molecular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - Yoann Fagault
- CEREGE, Aix Marseille Université, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France
| | - Thibaut Tuna
- CEREGE, Aix Marseille Université, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France
| | - Edouard Bard
- CEREGE, Aix Marseille Université, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois BP 80, 13545 Aix-en-Provence Cedex 4, France
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241 – U1050), Collège de France, 75231 Paris, France
| | - Mateja Hajdinjak
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Jarosław Wilczyński
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Krakow, Poland
| |
Collapse
|
6
|
Lien A, Legori LP, Kraft L, Sackett PW, Renaud G. Benchmarking software tools for trimming adapters and merging next-generation sequencing data for ancient DNA. FRONTIERS IN BIOINFORMATICS 2023; 3:1260486. [PMID: 38131007 PMCID: PMC10733496 DOI: 10.3389/fbinf.2023.1260486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Ancient DNA is highly degraded, resulting in very short sequences. Reads generated with modern high-throughput sequencing machines are generally longer than ancient DNA molecules, therefore the reads often contain some portion of the sequencing adaptors. It is crucial to remove those adaptors, as they can interfere with downstream analysis. Furthermore, overlapping portions when DNA has been read forward and backward (paired-end) can be merged to correct sequencing errors and improve read quality. Several tools have been developed for adapter trimming and read merging, however, no one has attempted to evaluate their accuracy and evaluate their potential impact on downstream analyses. Through the simulation of sequencing data, seven commonly used tools were analyzed in their ability to reconstruct ancient DNA sequences through read merging. The analyzed tools exhibit notable differences in their abilities to correct sequence errors and identify the correct read overlap, but the most substantial difference is observed in their ability to calculate quality scores for merged bases. Selecting the most appropriate tool for a given project depends on several factors, although some tools such as fastp have some shortcomings, whereas others like leeHom outperform the other tools in most aspects. While the choice of tool did not result in a measurable difference when analyzing population genetics using principal component analysis, it is important to note that downstream analyses that are sensitive to wrongly merged reads or that rely on quality scores can be significantly impacted by the choice of tool.
Collapse
Affiliation(s)
- Annette Lien
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Louis Kraft
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Wad Sackett
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gabriel Renaud
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Bennett EA, Parasayan O, Prat S, Péan S, Crépin L, Yanevich A, Grange T, Geigl EM. Genome sequences of 36,000- to 37,000-year-old modern humans at Buran-Kaya III in Crimea. Nat Ecol Evol 2023; 7:2160-2172. [PMID: 37872416 DOI: 10.1038/s41559-023-02211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/06/2023] [Indexed: 10/25/2023]
Abstract
Populations genetically related to present-day Europeans first appeared in Europe at some point after 38,000-40,000 years ago, following a cold period of severe climatic disruption. These new migrants would eventually replace the pre-existing modern human ancestries in Europe, but initial interactions between these groups are unclear due to the lack of genomic evidence from the earliest periods of the migration. Here we describe the genomes of two 36,000-37,000-year-old individuals from Buran-Kaya III in Crimea as belonging to this newer migration. Both genomes share the highest similarity to Gravettian-associated individuals found several thousand years later in southwestern Europe. These genomes also revealed that the population turnover in Europe after 40,000 years ago was accompanied by admixture with pre-existing modern human populations. European ancestry before 40,000 years ago persisted not only at Buran-Kaya III but is also found in later Gravettian-associated populations of western Europe and Mesolithic Caucasus populations.
Collapse
Affiliation(s)
- E Andrew Bennett
- Institut Jacques Monod, CNRS, Université Paris Cité, Paris, France
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Oğuzhan Parasayan
- Institut Jacques Monod, CNRS, Université Paris Cité, Paris, France
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Human Evolutionary Genetics Unit, Paris, France
| | - Sandrine Prat
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Alliance Sorbonne Université, Musée de l'Homme, Palais de Chaillot, Paris, France
| | - Stéphane Péan
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Muséum national d'Histoire naturelle, Alliance Sorbonne Université, Institut de Paléontologie Humaine, Paris, France
| | - Laurent Crépin
- UMR 7194 (HNHP), MNHN/CNRS/UPVD, Muséum national d'Histoire naturelle, Alliance Sorbonne Université, Institut de Paléontologie Humaine, Paris, France
| | - Alexandr Yanevich
- Institute of Archaeology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Thierry Grange
- Institut Jacques Monod, CNRS, Université Paris Cité, Paris, France.
| | - Eva-Maria Geigl
- Institut Jacques Monod, CNRS, Université Paris Cité, Paris, France.
| |
Collapse
|
8
|
Villalba-Mouco V, van de Loosdrecht MS, Rohrlach AB, Fewlass H, Talamo S, Yu H, Aron F, Lalueza-Fox C, Cabello L, Cantalejo Duarte P, Ramos-Muñoz J, Posth C, Krause J, Weniger GC, Haak W. A 23,000-year-old southern Iberian individual links human groups that lived in Western Europe before and after the Last Glacial Maximum. Nat Ecol Evol 2023; 7:597-609. [PMID: 36859553 PMCID: PMC10089921 DOI: 10.1038/s41559-023-01987-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/03/2023] [Indexed: 03/03/2023]
Abstract
Human populations underwent range contractions during the Last Glacial Maximum (LGM) which had lasting and dramatic effects on their genetic variation. The genetic ancestry of individuals associated with the post-LGM Magdalenian technocomplex has been interpreted as being derived from groups associated with the pre-LGM Aurignacian. However, both these ancestries differ from that of central European individuals associated with the chronologically intermediate Gravettian. Thus, the genomic transition from pre- to post-LGM remains unclear also in western Europe, where we lack genomic data associated with the intermediate Solutrean, which spans the height of the LGM. Here we present genome-wide data from sites in Andalusia in southern Spain, including from a Solutrean-associated individual from Cueva del Malalmuerzo, directly dated to ~23,000 cal yr BP. The Malalmuerzo individual carried genetic ancestry that directly connects earlier Aurignacian-associated individuals with post-LGM Magdalenian-associated ancestry in western Europe. This scenario differs from Italy, where individuals associated with the transition from pre- and post-LGM carry different genetic ancestries. This suggests different dynamics in the proposed southern refugia of Ice Age Europe and posits Iberia as a potential refugium for western European pre-LGM ancestry. More, individuals from Cueva Ardales, which were thought to be of Palaeolithic origin, date younger than expected and, together with individuals from the Andalusian sites Caserones and Aguilillas, fall within the genetic variation of the Neolithic, Chalcolithic and Bronze Age individuals from southern Iberia.
Collapse
Affiliation(s)
- Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, IUCA-Aragosaurus, Zaragoza, Spain.
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| | - Marieke S van de Loosdrecht
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Helen Fewlass
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sahra Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - He Yu
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
- Natural Sciences Museum of Barcelona (MCNB), Barcelona, Spain
| | - Lidia Cabello
- University of Málaga and Grupo HUM-440 University of Cádiz, Cádiz, Spain
| | | | - José Ramos-Muñoz
- Departamento de Historia, Geografía y Filosofía, Universidad de Cádiz, Cádiz, Spain
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
9
|
Marsh WA, Brace S, Barnes I. Inferring biological kinship in ancient datasets: comparing the response of ancient DNA-specific software packages to low coverage data. BMC Genomics 2023; 24:111. [PMID: 36918761 PMCID: PMC10015695 DOI: 10.1186/s12864-023-09198-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND The inference of biological relations between individuals is fundamental to understanding past human societies. Caregiving, resource sharing and sexual behaviours are often mediated by biological kinship and yet the identification and interpretation of kin relationships in prehistoric human groups is difficult. In recent years, the advent of archaeogenetic techniques have offered a fresh approach, and when combined with more traditional osteological and interpretive archaeological methods, allows for improved interpretation of the burial practices, cultural behaviours, and societal stratification in ancient societies. Although archaeogenetic techniques are developing at pace, questions remain as to their accuracy, particularly when applied to the low coverage datasets that results from the sequencing of DNA derived from highly degraded ancient material. RESULTS The performance of six of the most commonly used kinship identifcation software methods was explored at a range of low and ultra low genome coverages. An asymmetrical response was observed across packages, with decreased genome coverage resulting in differences in both direction and degree of change of calculated kinship scores and thus pairwise relatedness estimates are dependant on both package used and genome coverage. Methods reliant upon genotype likelihoods methods (lcMLkin, NGSrelate and NGSremix) show a decreased level of prediction at coverage below 1x, although were consistent in the particular relationships identified at these coverages when compared to the pseudohaploid reliant methods tested (READ, the Kennett 2017 method and TKGWV2.0). The three pseudohaploid methods show predictive potential at coverages as low as 0.05x, although the accuracy of the relationships identified is questionable given the increase in the number of relationships identifIed at the low coverage (type I errors). CONCLUSION Two pseudohaploid methods (READ and Kennett 2017) show relatively consistent inference of kin relationships at low coverage (0.5x), with READ only showing a significant performance drop off at ultralow coverages (< 0.2x). More generally, our results reveal asymmetrical kinship classifications in some software packages even at high coverages, highlighting the importance of applying multiple methods to authenticate kin relationships in ancient material, along with the continuing need to develop laboratory methods that maximise data output for downstream analyses.
Collapse
Affiliation(s)
- William A Marsh
- Natural History Museum, Cromwell Road, SW7 5BD, London, England. .,BioArCh, University of York, YO10 5NG, York, England.
| | - Selina Brace
- Natural History Museum, Cromwell Road, SW7 5BD, London, England
| | - Ian Barnes
- Natural History Museum, Cromwell Road, SW7 5BD, London, England
| |
Collapse
|
10
|
Gravel-Miguel C, Cristiani E, Hodgkins J, Orr CM, Strait DS, Peresani M, Benazzi S, Pothier-Bouchard G, Keller HM, Meyer D, Drohobytsky D, Talamo S, Panetta D, Zupancich A, Miller CE, Negrino F, Riel-Salvatore J. The Ornaments of the Arma Veirana Early Mesolithic Infant Burial. JOURNAL OF ARCHAEOLOGICAL METHOD AND THEORY 2022; 30:757-804. [PMID: 37600347 PMCID: PMC10432373 DOI: 10.1007/s10816-022-09573-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/09/2022] [Indexed: 08/22/2023]
Abstract
Personal ornaments are widely viewed as indicators of social identity and personhood. Ornaments are ubiquitous from the Late Pleistocene to the Holocene, but they are most often found as isolated objects within archaeological assemblages without direct evidence on how they were displayed. This article presents a detailed record of the ornaments found in direct association with an Early Mesolithic buried female infant discovered in 2017 at the site of Arma Veirana (Liguria, Italy). It uses microscopic, 3D, and positional analyses of the ornaments as well as a preliminary perforation experiment to document how they were perforated, used, and what led to their deposit as part of the infant's grave goods. This study provides important information on the use of beads in the Early Mesolithic, in general, as well as the relationship between beads and young subadults, in particular. The results of the study suggest that the beads were worn by members of the infant's community for a considerable period before they were sewn onto a sling, possibly used to keep the infant close to the parents while allowing their mobility, as seen in some modern forager groups. The baby was then likely buried in this sling to avoid reusing the beads that had failed to protect her or simply to create a lasting connection between the deceased infant and her community. Supplementary Information The online version contains supplementary material available at 10.1007/s10816-022-09573-7.
Collapse
Affiliation(s)
- C. Gravel-Miguel
- Département d’anthropologie, Université de Montréal, Montréal, QC Canada
| | - E. Cristiani
- DANTE – Diet and ANcient TEchnology Laboratory, Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - J. Hodgkins
- Department of Anthropology, University of Colorado Denver, Denver, CO USA
| | - C. M. Orr
- Department of Anthropology, University of Colorado Denver, Denver, CO USA
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO USA
| | - D. S. Strait
- Department of Anthropology, Washington University, St. Louis, MO USA
- Palaeo-Research Institute, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - M. Peresani
- Prehistory and Antropology Science Unit, Department of Humanities, University of Ferrara, Sezione Di Scienze Preistoriche E Antropologiche, Ferrara, Italy
- Institute of Environmental Geology and Geoengineering (IGAG), National Research Council, Milan, Italy
| | - S. Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - G. Pothier-Bouchard
- Département d’anthropologie, Université de Montréal, Montréal, QC Canada
- Département des sciences historiques, Université Laval, Québec, Canada
| | - H. M. Keller
- Department of Anthropology, Yale University, New Haven, CT USA
| | - D. Meyer
- Cultural Heritage Engineering Initiative (CHEI), University of California San Diego, La Jolla, CA USA
| | - D. Drohobytsky
- Cultural Heritage Engineering Initiative (CHEI), University of California San Diego, La Jolla, CA USA
| | - S. Talamo
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Chemistry G. Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - D. Panetta
- Institute of Clinical Physiology - CNR-IFC, Pisa, Italy
| | - A. Zupancich
- DANTE – Diet and ANcient TEchnology Laboratory, Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy
- Archaeology of Social Dynamics, Institución Milá Y Fontanals, Spanish National Research Council (CSIC), Barcelona, Spain
| | - C. E. Miller
- Institute for Archaeological Sciences and Senckenberg Centre for Human Evolution and Paleoenvironment, University of Tübingen, Tübingen, Germany
- SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
| | - F. Negrino
- Department of Antiquities, Philosophy, History, University of Genoa, Genoa, Italy
| | - J. Riel-Salvatore
- Département d’anthropologie, Université de Montréal, Montréal, QC Canada
| |
Collapse
|
11
|
An infant burial from Arma Veirana in northwestern Italy provides insights into funerary practices and female personhood in early Mesolithic Europe. Sci Rep 2021; 11:23735. [PMID: 34907203 PMCID: PMC8671481 DOI: 10.1038/s41598-021-02804-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
The evolution and development of human mortuary behaviors is of enormous cultural significance. Here we report a richly-decorated young infant burial (AVH-1) from Arma Veirana (Liguria, northwestern Italy) that is directly dated to 10,211-9910 cal BP (95.4% probability), placing it within the early Holocene and therefore attributable to the early Mesolithic, a cultural period from which well-documented burials are exceedingly rare. Virtual dental histology, proteomics, and aDNA indicate that the infant was a 40-50 days old female. Associated artifacts indicate significant material and emotional investment in the child's interment. The detailed biological profile of AVH-1 establishes the child as the earliest European near-neonate documented to be female. The Arma Veirana burial thus provides insight into sex/gender-based social status, funerary treatment, and the attribution of personhood to the youngest individuals among prehistoric hunter-gatherer groups and adds substantially to the scant data on mortuary practices from an important period in prehistory shortly following the end of the last Ice Age.
Collapse
|
12
|
Do Males Affect Twinning Events? A Review of Current Findings/Twin Research Reviews: Monozygotic Twins Discordant for Parkinson's Disease; Fetal Loss in Twin Pregnancies Following Prenatal Diagnosis; Uterine Rupture and Repair in an Early Twin Pregnancy; Twin Study of Affectionate Communication/Human Interest: Conjoined Twins in a Triplet Set; Identical Twin Nurses Deliver Identical Twins; Identical Twins Discordant for COVID-19 Recovery Course; Identical Twins Pass Away from COVID-19; Archeological Finds of Oldest Identical Twins. Twin Res Hum Genet 2021; 24:140-144. [PMID: 33736741 DOI: 10.1017/thg.2021.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Research into the origins of twinning has focused mostly on contributions from the female side of the family. A review of current findings suggests that possible male contributions to twinning events have been overlooked. This section is followed by brief reviews of twin research concerning monozygotic twins discordant for Parkinson's disease, fetal loss in twin pregnancies following prenatal diagnosis, uterine rupture and repair in an early twin pregnancy and a twin study of affectionate communication. The concluding portion of this article presents human interest stories involving twins that are both informative and poignant, namely conjoined twins in a triplet set, identical twin nurses who delivered identical twins, identical twins discordant for COVID-19 recovery course, identical twins who passed away from COVID-19 and archeological finds of the oldest identical twins.
Collapse
|