1
|
Al-Maamari A, Sultan M, Ding S, Yuxin D, Wang MY, Su S. Mechanisms and implications of histamine-induced reactions and complications. Allergol Immunopathol (Madr) 2025; 53:122-139. [PMID: 40342122 DOI: 10.15586/aei.v53i3.1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 05/11/2025]
Abstract
Histamine, classified as a biogenic amine, plays a crucial role in both pro-inflammatory and immune regulatory processes, thereby establishing itself as a key mediator in allergic diseases and immune responses. This review provides an exhaustive analysis of the structure, function, and regulation of histamine, with particular emphasis on its interaction with four receptor subtypes: histamine H1 receptor (H1R), histamine H2 receptor (H2R), histamine H3 receptor (H3R), and histamine H4 receptor (H4R), all of which are instrumental in mediating a variety of physiological processes, including neurotransmitter release, modulation of immune responses, and gastric acid secretion. The review explores intracellular signaling pathways mediated by the activation of these receptors, highlighting the complex cascades involved in immediate- and delayed-type hypersensitivity reactions. It also examines the broad spectrum of histamine-induced complications, focusing on their effects on the gastrointestinal, cardiovascular, respiratory, and central nervous systems, and emphasizes histamine's potential to cause vascular dysfunction and other pathological changes. Furthermore, the role of histamine in inflammation and immune responses is explored, particularly in the context of allergic diseases such as asthma, allergic rhinitis, and atopic dermatitis. The review also covers pharmacological interventions targeting histamine receptors, including the use of antihistamines and mast cell stabilizers, which are critical for the treatment of symptoms and the inhibition of the progression of histamine-related conditions. Finally, the review addresses emerging research and future directions, identifying potential areas for innovation and improved therapeutic strategies. This comprehensive overview not only deepens understanding of histamine's multifaceted roles in health and disease, but also underscores the importance of developing advanced diagnostic tools and targeted treatments for histamine-associated disorders.
Collapse
Affiliation(s)
- Ahmed Al-Maamari
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Shanshan Ding
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Duan Yuxin
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Meng-Yao Wang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China
| | - Suwen Su
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Hebei Medical University, Shijiazhuang, P.R. China;
| |
Collapse
|
2
|
Zhang Y, Cheng Y, Tang H, Yue Q, Cai X, Lu Z, Hao Y, Dai A, Hou T, Liu H, Kong N, Ji X, Lu C, Xu S, Huang K, Zeng X, Wen Y, Ma W, Guan J, Lin Y, Zheng W, Pan H, Wu J, Wu R, Wei N. APOE ε4-associated downregulation of the IL-7/IL-7R pathway in effector memory T cells: Implications for Alzheimer's disease. Alzheimers Dement 2024; 20:6441-6455. [PMID: 39129310 PMCID: PMC11497660 DOI: 10.1002/alz.14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION The apolipoprotein E (APOE) ε4 allele exerts a significant influence on peripheral inflammation and neuroinflammation, yet the underlying mechanisms remain elusive. METHODS The present study enrolled 54 patients diagnosed with late-onset Alzheimer's disease (AD; including 28 APOE ε4 carriers and 26 non-carriers). Plasma inflammatory cytokine concentration was assessed, alongside bulk RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq) analysis of peripheral blood mononuclear cells (PBMCs). RESULTS Plasma tumor necrosis factor α, interferon γ, and interleukin (IL)-33 levels increased in the APOE ε4 carriers but IL-7 expression notably decreased. A negative correlation was observed between plasma IL-7 level and the hippocampal atrophy degree. Additionally, the expression of IL-7R and CD28 also decreased in PBMCs of APOE ε4 carriers. ScRNA-seq data results indicated that the changes were mainly related to the CD4+ Tem (effector memory) and CD8+ Tem T cells. DISCUSSION These findings shed light on the role of the downregulated IL-7/IL-7R pathway associated with the APOE ε4 allele in modulating neuroinflammation and hippocampal atrophy. HIGHLIGHTS The apolipoprotein E (APOE) ε4 allele decreases plasma interleukin (IL)-7 and aggravates hippocampal atrophy in Alzheimer's disease. Plasma IL-7 level is negatively associated with the degree of hippocampal atrophy. The expression of IL-7R signaling decreased in peripheral blood mononuclear cells of APOE ε4 carriers Dysregulation of the IL-7/IL-7R signal pathways enriches T cells.
Collapse
Affiliation(s)
- Ying‐Jie Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Department of RehabilitationThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yan Cheng
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Department of RadiologyThe Second Hospital of Shandong UniversityJinanChina
| | - Hai‐Liang Tang
- Department of NeurosurgeryFudan University Huashan HospitalShanghai Medical College Fudan UniversityShanghaiChina
| | - Qi Yue
- Department of NeurosurgeryFudan University Huashan HospitalShanghai Medical College Fudan UniversityShanghaiChina
| | - Xin‐Yi Cai
- Department of PathologyProvincial Key Laboratory of Infectious Diseases and Molecular ImmunopathologyShantou University Medical CollegeShantouChina
| | - Zhi‐Jie Lu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yi‐Xuan Hao
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - An‐Xiang Dai
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ting Hou
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Hao‐Xin Liu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Nan Kong
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xiao‐Yu Ji
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Chang‐Hao Lu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Sheng‐Liang Xu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Kai Huang
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xin Zeng
- Department of GeriatricsThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ya‐Qi Wen
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Wan‐Yin Ma
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ji‐Tian Guan
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Yan Lin
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Wen‐Bin Zheng
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Hui Pan
- Department of Family MedicineShantou Longhu People's HospitalShantouChina
| | - Jie Wu
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Ren‐Hua Wu
- Department of RadiologyThe Second Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Nai‐Li Wei
- Department of NeurosurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
3
|
Chitsamankhun C, Siritongtaworn N, Fournier BPJ, Sriwattanapong K, Theerapanon T, Samaranayake L, Porntaveetus T. Cathepsin C in health and disease: from structural insights to therapeutic prospects. J Transl Med 2024; 22:777. [PMID: 39164687 PMCID: PMC11337848 DOI: 10.1186/s12967-024-05589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024] Open
Abstract
Cathepsin C (CTSC) is a lysosomal cysteine protease constitutively expressed at high levels in the lung, kidney, liver, and spleen. It plays a key role in the activation of serine proteases in cytotoxic T cells, natural killer cells (granzymes A and B), mast cells (chymase and tryptase) and neutrophils (cathepsin G, neutrophil elastase, proteinase 3) underscoring its pivotal significance in immune and inflammatory defenses. Here, we comprehensively review the structural attributes, synthesis, and function of CTSC, with a focus on its variants implicated in the etiopathology of several syndromes associated with neutrophil serine proteases, including Papillon-Lefevre syndrome (PLS), Haim-Munk Syndrome (HMS), and aggressive periodontitis (AP). These syndromes are characterized by palmoplantar hyperkeratosis, and early-onset periodontitis (severe gum disease) resulting in premature tooth loss. Due to the critical role played by CTSC in these and several other conditions it is being explored as a potential therapeutic target for autoimmune and inflammatory disorders. The review also discusses in depth the gene variants of CTSC, and in particular their postulated association with chronic obstructive pulmonary disease (COPD), COVID-19, various cancers, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, sudden cardiac death (SCD), atherosclerotic vascular disease, and neuroinflammatory disease. Finally, the therapeutic potential of CTSC across a range of human diseases is discussed.
Collapse
Affiliation(s)
- Chakriya Chitsamankhun
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nutwara Siritongtaworn
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - B P J Fournier
- Dental Faculty, Oral Biology Department, Reference Center of Oral and Dental Rare Diseases, Rothschild Hospital, Université Paris Cité, Paris, France
| | - Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Lakshman Samaranayake
- Faculty of Dentistry, University of Hong Kong, Hospital Road, Hong Kong, Hong Kong
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- Graduate Program in Geriatric and Special Patients Care, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Kruk ME, Mehta S, Murray K, Higgins L, Do K, Johnson JE, Wagner R, Wendt CH, O’Connor JB, Harris JK, Laguna TA, Jagtap PD, Griffin TJ. An integrated metaproteomics workflow for studying host-microbe dynamics in bronchoalveolar lavage samples applied to cystic fibrosis disease. mSystems 2024; 9:e0092923. [PMID: 38934598 PMCID: PMC11264604 DOI: 10.1128/msystems.00929-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
Airway microbiota are known to contribute to lung diseases, such as cystic fibrosis (CF), but their contributions to pathogenesis are still unclear. To improve our understanding of host-microbe interactions, we have developed an integrated analytical and bioinformatic mass spectrometry (MS)-based metaproteomics workflow to analyze clinical bronchoalveolar lavage (BAL) samples from people with airway disease. Proteins from BAL cellular pellets were processed and pooled together in groups categorized by disease status (CF vs. non-CF) and bacterial diversity, based on previously performed small subunit rRNA sequencing data. Proteins from each pooled sample group were digested and subjected to liquid chromatography tandem mass spectrometry (MS/MS). MS/MS spectra were matched to human and bacterial peptide sequences leveraging a bioinformatic workflow using a metagenomics-guided protein sequence database and rigorous evaluation. Label-free quantification revealed differentially abundant human peptides from proteins with known roles in CF, like neutrophil elastase and collagenase, and proteins with lesser-known roles in CF, including apolipoproteins. Differentially abundant bacterial peptides were identified from known CF pathogens (e.g., Pseudomonas), as well as other taxa with potentially novel roles in CF. We used this host-microbe peptide panel for targeted parallel-reaction monitoring validation, demonstrating for the first time an MS-based assay effective for quantifying host-microbe protein dynamics within BAL cells from individual CF patients. Our integrated bioinformatic and analytical workflow combining discovery, verification, and validation should prove useful for diverse studies to characterize microbial contributors in airway diseases. Furthermore, we describe a promising preliminary panel of differentially abundant microbe and host peptide sequences for further study as potential markers of host-microbe relationships in CF disease pathogenesis.IMPORTANCEIdentifying microbial pathogenic contributors and dysregulated human responses in airway disease, such as CF, is critical to understanding disease progression and developing more effective treatments. To this end, characterizing the proteins expressed from bacterial microbes and human host cells during disease progression can provide valuable new insights. We describe here a new method to confidently detect and monitor abundance changes of both microbe and host proteins from challenging BAL samples commonly collected from CF patients. Our method uses both state-of-the art mass spectrometry-based instrumentation to detect proteins present in these samples and customized bioinformatic software tools to analyze the data and characterize detected proteins and their association with CF. We demonstrate the use of this method to characterize microbe and host proteins from individual BAL samples, paving the way for a new approach to understand molecular contributors to CF and other diseases of the airway.
Collapse
Affiliation(s)
- Monica E. Kruk
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Subina Mehta
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Kevin Murray
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, Minnesota, USA
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
- Center for Metabolomics and Proteomics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Katherine Do
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - James E. Johnson
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Reid Wagner
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chris H. Wendt
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
- Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
| | - John B. O’Connor
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, Seattle, Washington, USA
| | - J. Kirk Harris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Theresa A. Laguna
- Department of Pediatrics, Division of Pulmonary and Sleep Medicine, Seattle Children’s Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Bernard JK, Marakovits C, Smith LG, Francis H. Mast Cell and Innate Immune Cell Communication in Cholestatic Liver Disease. Semin Liver Dis 2023; 43:226-233. [PMID: 37268012 DOI: 10.1055/a-2104-9034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells (MCs) contribute to the pathogenesis of cholestatic liver diseases (primary sclerosing cholangitis [PSC] and primary biliary cholangitis [PBC]). PSC and PBC are immune-mediated, chronic inflammatory diseases, characterized by bile duct inflammation and stricturing, advancing to hepatobiliary cirrhosis. MCs are tissue resident immune cells that may promote hepatic injury, inflammation, and fibrosis formation by either direct or indirect interactions with other innate immune cells (neutrophils, macrophages/Kupffer cells, dendritic cells, natural killer, and innate lymphoid cells). The activation of these innate immune cells, usually through the degranulation of MCs, promotes antigen uptake and presentation to adaptive immune cells, exacerbating liver injury. In conclusion, dysregulation of MC-innate immune cell communications during liver injury and inflammation can lead to chronic liver injury and cancer.
Collapse
Grants
- IK6BX005226 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- 1I01BX003031 Hickam Endowed Chair, Gastroenterology, Medicine, Indiana University, the Indiana University Health - Indiana University School of Medicine Strategic Research Initiative
- DK108959 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
- DK119421 United States Department of Veteran's Affairs, Biomedical Laboratory Research and Development Service
Collapse
Affiliation(s)
- Jessica K Bernard
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Leah G Smith
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
6
|
COVID-19 Pathology Sheds Further Light on Balance between Neutrophil Proteases and Their Inhibitors. Biomolecules 2022; 13:biom13010082. [PMID: 36671467 PMCID: PMC9855895 DOI: 10.3390/biom13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Excessive neutrophil influx and activation in lungs during infections, such as manifest during the ongoing SARS CoV-2 pandemic, have brought neutrophil extracellular traps (NETs) and the concomitant release of granule contents that damage surrounding tissues into sharp focus. Neutrophil proteases, which are known to participate in NET release, also enable the binding of the viral spike protein to cellular receptors and assist in the spread of infection. Blood and tissue fluids normally also contain liver-derived protease inhibitors that balance the activity of proteases. Interestingly, neutrophils themselves also express the protease inhibitor alpha-1-antitrypsin (AAT), the product of the SERPINA-1 gene, and store it in neutrophil cytoplasmic granules. The absence of AAT or mutations in the SERPINA-1 gene promotes lung remodeling and fibrosis in diseases such as chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS) and increases the risk of allergic responses. Recent observations point to the fact that reduced activity of AAT presents a major susceptibility factor for severe COVID-19. Here, we focus attention on the mechanism of neutrophil elastase (NE) in NET release and its inhibition by AAT as an additional factor that may determine the severity of COVID-19.
Collapse
|
7
|
Burster T, Mustafa Z, Myrzakhmetova D, Zhanapiya A, Zimecki M. Hindrance of the Proteolytic Activity of Neutrophil-Derived Serine Proteases by Serine Protease Inhibitors as a Management of Cardiovascular Diseases and Chronic Inflammation. Front Chem 2021; 9:784003. [PMID: 34869231 PMCID: PMC8634265 DOI: 10.3389/fchem.2021.784003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
During inflammation neutrophils become activated and segregate neutrophil serine proteases (NSPs) to the surrounding environment in order to support a natural immune defense. However, an excess of proteolytic activity of NSPs can cause many complications, such as cardiovascular diseases and chronic inflammatory disorders, which will be elucidated on a biochemical and immunological level. The application of selective serine protease inhibitors is the logical consequence in the management of the indicated comorbidities and will be summarized in this briefing.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Zhadyra Mustafa
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dinara Myrzakhmetova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Michal Zimecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
8
|
Voss M, Kotrba J, Gaffal E, Katsoulis-Dimitriou K, Dudeck A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int J Mol Sci 2021; 22:ijms22094589. [PMID: 33925601 PMCID: PMC8123885 DOI: 10.3390/ijms22094589] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MCs) are best-known as key effector cells of immediate-type allergic reactions that may even culminate in life-threatening anaphylactic shock syndromes. However, strategically positioned at the host–environment interfaces and equipped with a plethora of receptors, MCs also play an important role in the first-line defense against pathogens. Their main characteristic, the huge amount of preformed proinflammatory mediators embedded in secretory granules, allows for a rapid response and initiation of further immune effector cell recruitment. The same mechanism, however, may account for detrimental overshooting responses. MCs are not only detrimental in MC-driven diseases but also responsible for disease exacerbation in other inflammatory disorders. Focusing on the skin as the largest immune organ, we herein review both beneficial and detrimental functions of skin MCs, from skin barrier integrity via host defense mechanisms to MC-driven inflammatory skin disorders. Moreover, we emphasize the importance of IgE-independent pathways of MC activation and their role in sustained chronic skin inflammation and disease exacerbation.
Collapse
Affiliation(s)
- Martin Voss
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Johanna Kotrba
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Evelyn Gaffal
- Laboratory for Experimental Dermatology, Department of Dermatology, University Hospital Magdeburg, 39120 Magdeburg, Germany;
| | - Konstantinos Katsoulis-Dimitriou
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
| | - Anne Dudeck
- Medical Faculty, Institute for Molecular and Clinical Immunology, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany; (M.V.); (J.K.); (K.K.-D.)
- Health Campus Immunology, Infectiology and Inflammation, Otto-Von-Guericke-University Magdeburg, 39120 Magdeburg, Germany
- Correspondence:
| |
Collapse
|