1
|
Shang Y, Shi H, Liu M, Lan P, Li D, Liu X, Wang M, Zhang Z, Chen S. Using synthetic biology to express nitrogenase biosynthesis pathway in rice and to overcome barriers of nitrogenase instability in plant cytosol. Trends Biotechnol 2025; 43:946-968. [PMID: 39818476 DOI: 10.1016/j.tibtech.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/18/2025]
Abstract
Engineering nitrogen fixation in cereals could reduce usage of chemical nitrogen fertilizers. Here, a nitrogenase biosynthesis pathway comprising 13 genes (nifB nifH nifD nifK nifE nifN nifX hesA nifV nifS nifU groES groEL) was introduced into rice by transforming multigene vectors and subsequently by sexual crossing between transgenic rice plants. Genome sequencing analysis revealed that 13 nif genes in F4 hybrid rice lines L12-13 and L8-17 were inserted at two loci on rice chromosome 1. Eleven nitrogen fixation (Nif) proteins were produced and stable NifDK tetramer was formed in rice cytosol. NifH in rice cytosol was unstable and NifH-S18 was found to be a key residue that conferred susceptibility to proteinase degradation. NifH variants with Fe protein activity and resistance to plant endoproteinase cleavage were obtained. This study provides an efficient approach for introducing multiple nif genes into plants and also helps to pre-evaluate the stability of prokaryotic proteins in plant cytosol.
Collapse
Affiliation(s)
- Yimin Shang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Haowen Shi
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minzhi Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Peichun Lan
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Deyu Li
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaomeng Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minyang Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanfeng Chen
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Payá-Tormo L, Echavarri-Erasun C, Makarovsky-Saavedra N, Pérez-González A, Yang ZY, Guo Y, Seefeldt LC, Rubio LM. Iron-molybdenum cofactor synthesis by a thermophilic nitrogenase devoid of the scaffold NifEN. Proc Natl Acad Sci U S A 2024; 121:e2406198121. [PMID: 39503886 PMCID: PMC11573651 DOI: 10.1073/pnas.2406198121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/07/2024] [Indexed: 11/10/2024] Open
Abstract
The maturation and installation of the active site metal cluster (FeMo-co, Fe7S9CMo-R-homocitrate) in Mo-dependent nitrogenase requires the protein product of the nifB gene for production of the FeS cluster precursor (NifB-co, [Fe8S9C]) and the action of the maturase complex composed of the protein products from the nifE and nifN genes. However, some putative diazotrophic bacteria, like Roseiflexus sp. RS-1, lack the nifEN genes, suggesting an alternative pathway for maturation of FeMo-co that does not require NifEN. In this study, the Roseiflexus NifH, NifB, and apo-NifDK proteins produced in Escherichia coli are shown to be sufficient for FeMo-co maturation and insertion into the NifDK protein to achieve active nitrogenase. The E. coli expressed NifDKRS contained P-clusters but was devoid of FeMo-co (referred to as apo-NifDKRS). Apo-NifDKRS could be activated for N2 reduction by addition of preformed FeMo-co. Further, it was found that apo-NifDKRS plus E. coli produced NifBRS and NifHRS were sufficient to yield active NifDKRS when incubated with the necessary substrates (homocitrate, molybdate, and S-adenosylmethionine [SAM]), demonstrating that these proteins can replace the need for NifEN in maturation of Mo-nitrogenase. The E. coli produced NifHRS and NifBRS proteins were independently shown to be functional. The reconstituted NifDKRS demonstrated reduction of N2, protons, and acetylene in ratios observed for Azotobacter vinelandii NifDK. These findings reveal a distinct NifEN-independent pathway for nitrogenase activation involving NifHRS, NifBRS, and apo-NifDKRS.
Collapse
Affiliation(s)
- Lucía Payá-Tormo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid28040, Spain
| | - Carlos Echavarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid28040, Spain
| | - Natalia Makarovsky-Saavedra
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid28223, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid28040, Spain
| | - Ana Pérez-González
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid28223, Spain
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT84322
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA15213
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT84322
| | - Luis M. Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid e Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas, Madrid28223, Spain
| |
Collapse
|
3
|
Shomar H, Bokinsky G. Harnessing iron‑sulfur enzymes for synthetic biology. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119718. [PMID: 38574823 DOI: 10.1016/j.bbamcr.2024.119718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Reactions catalysed by iron-sulfur (Fe-S) enzymes appear in a variety of biosynthetic pathways that produce valuable natural products. Harnessing these biosynthetic pathways by expression in microbial cell factories grown on an industrial scale would yield enormous economic and environmental benefits. However, Fe-S enzymes often become bottlenecks that limits the productivity of engineered pathways. As a consequence, achieving the production metrics required for industrial application remains a distant goal for Fe-S enzyme-dependent pathways. Here, we identify and review three core challenges in harnessing Fe-S enzyme activity, which all stem from the properties of Fe-S clusters: 1) limited Fe-S cluster supply within the host cell, 2) Fe-S cluster instability, and 3) lack of specialized reducing cofactor proteins often required for Fe-S enzyme activity, such as enzyme-specific flavodoxins and ferredoxins. We highlight successful methods developed for a variety of Fe-S enzymes and electron carriers for overcoming these difficulties. We use heterologous nitrogenase expression as a grand case study demonstrating how each of these challenges can be addressed. We predict that recent breakthroughs in protein structure prediction and design will prove well-suited to addressing each of these challenges. A reliable toolkit for harnessing Fe-S enzymes in engineered metabolic pathways will accelerate the development of industry-ready Fe-S enzyme-dependent biosynthesis pathways.
Collapse
Affiliation(s)
- Helena Shomar
- Institut Pasteur, université Paris Cité, Inserm U1284, Diversité moléculaire des microbes (Molecular Diversity of Microbes lab), 75015 Paris, France
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
4
|
Wu Z, Xia W, Ou L, Zheng L, Hou B, Pan T, Sun W, Koole LH, Shao Y, Qi L. Utilization of Nitrogen-Doped Graphene Quantum Dots to Neutralize ROS and Modulate Intracellular Antioxidant Pathways to Improve Dry Eye Disease Therapy. Int J Nanomedicine 2024; 19:2691-2708. [PMID: 38510793 PMCID: PMC10950682 DOI: 10.2147/ijn.s445398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Purpose Patients afflicted with dry eye disease (DED) experience significant discomfort. The underlying cause of DED is the excessive accumulation of ROS on the ocular surface. Here, we investigated the nitrogen doped-graphene quantum dots (NGQDs), known for their ROS-scavenging capabilities, as a treatment for DED. Methods NGQDs were prepared by using citric acid and urea as precursors through hydrothermal method. The antioxidant abilities of NGQDs were evaluated through: scavenging the ROS both extracellular and intracellular, regulating the nuclear factor-erythroid 2-related factor (Nrf2) antioxidant pathway of human corneal epithelial cells (HCECs) and their transcription of inflammation related genes. Furthermore, NGQDs were modified by Arg-Gly-Asp-Ser (RGDS) peptides to obtain RGDS@NGQDs. In vivo, both the NGQDs and RGDS@NGQDs were suspended in 0.1% Pluronic F127 (w/v) and delivered as eye drops in the scopolamine hydrobromide-induced DED mouse model. Preclinical efficacy was compared to the healthy and DPBS treated DED mice. Results These NGQDs demonstrated pronounced antioxidant properties, efficiently neutralizing free radicals and activating the intracellular Nrf2 pathway. In vitro studies revealed that treatment of H2O2-exposed HCECs with NGQDs induced a preservation in cell viability. Additionally, there was a reduction in the transcription of inflammation-associated genes. To prolong the corneal residence time of NGQDs, they were further modified with RGDS peptides and suspended in 0.1% Pluronic F127 (w/v) to create RGDS@NGQDs F127 eye drops. RGDS@NGQDs exhibited superior intracellular antioxidant activity even at low concentrations (10 μg/mL). Subsequent in vivo studies revealed that RGDS@NGQDs F127 eye drops notably mitigated the symptoms of DED mouse model, primarily by reducing ocular ROS levels. Conclusion Our findings underscore the enhanced antioxidant benefits achieved by modifying GQDs through nitrogen doping and RGDS peptide tethering. Importantly, in a mouse model, our novel eye drops formulation effectively ameliorated DED symptoms, thereby representing a novel therapeutic pathway for DED management.
Collapse
Affiliation(s)
- Zixia Wu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, the People’s Republic of China
| | - Weibo Xia
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, the People’s Republic of China
| | - Liling Ou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, the People’s Republic of China
| | - Ling Zheng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, the People’s Republic of China
| | - Bingying Hou
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, the People’s Republic of China
| | - Tonghe Pan
- Ningbo Eye Hospital, Affiliated to Wenzhou Medical University, Ningbo, Zhejiang, 310000, the People’s Republic of China
| | - Wenjie Sun
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, the People’s Republic of China
| | - Leo H Koole
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, the People’s Republic of China
| | - Yongqing Shao
- Ningbo Eye Hospital, Affiliated to Wenzhou Medical University, Ningbo, Zhejiang, 310000, the People’s Republic of China
| | - Lei Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, the People’s Republic of China
| |
Collapse
|
5
|
Qiao J, Chen Z, Zhao J, Ren J, Wang H, Zhi C, Li J, Xing B, Nie H. Graphene promotes the growth of Vigna angularis by regulating the nitrogen metabolism and photosynthesis. PLoS One 2024; 19:e0297892. [PMID: 38451974 PMCID: PMC10919591 DOI: 10.1371/journal.pone.0297892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024] Open
Abstract
Graphene has promising applications in agriculture and forestry. In the current study, six different concentrations of graphene (0mg/L, 0.01mg/L, 0.10mg/L, 1.00mg/L, 10.00mg/L, and 100.00mg/L) were used to investigate its effect on the growth and development of V. angularis plants in soil culture. The results showed that the group treated with 1.00mg/L graphene (G-1) had significantly increased plant height (19.86%), stem diameter (24.33%), and leaf area (13.69%), compared to the control group (CK). Moreover, all concentrations of graphene had positive effects on the total root length, total root surface area, and the number of root tips of V. angularis. Compared to the CK group, the G-1 group had significantly increased leaf water potential (37.89%), leaf conductivity (2.25%), and SOD, POD, and CAT activities (47.67%, 35.22%, and 199.3%, respectively). The G-1 group also showed improved leaf net photosynthetic rate, chlorophyll content, and soluble sugar content (51.28%, 24.25%, and 38.35%, respectively), compared to the CK group. Additionally, 1.00mg/L graphene led to a 23.88% increase in the podding rate and a 17.04% increase in the yield of V. angularis plants. The rhizosphere soil of V. angularis treated with 1.00mg/L graphene had a 25.14% increase in hydrolyzable nitrogen content and a 66.67% increase in available phosphorus content. RNA-seq data indicated that 1.00mg/L graphene induced the expression of photosynthesis and nitrogen transmembrane transport genes, including ATP synthase subunit b, photosystem I reaction center subunit XI, photosystem I reaction center subunit IV A, ferredoxin, and psbP-like protein 1, as well as genes for photosynthesis antenna proteins, glutamine synthetase, glutamate dehydrogenase 1, cyanate hydratase, protein fluG-like, and NRT1/PTR family, suggesting that graphene promoted the growth and development of V. angularis by enhancing the photosynthesis and nitrogen metabolism processes in V. angularis plants. Our results indicated that a suitable concentration of graphene could significantly promote the growth of V. angularis plants in soil.
Collapse
Affiliation(s)
- Jun Qiao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Zhiwen Chen
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
| | - Jianguo Zhao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Jing Ren
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Hao Wang
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Caiyan Zhi
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Jingwei Li
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Baoyan Xing
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
| | - Hui Nie
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
| |
Collapse
|
6
|
Dobrzyńska K, Pérez-González A, Echavarri-Erasun C, Coroian D, Salinero-Lanzarote A, Veldhuizen M, Dean DR, Burén S, Rubio LM. Nitrogenase cofactor biosynthesis using proteins produced in mitochondria of Saccharomyces cerevisiae. mBio 2024; 15:e0308823. [PMID: 38126768 PMCID: PMC10865832 DOI: 10.1128/mbio.03088-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Biological nitrogen fixation, the conversion of inert N2 to metabolically tractable NH3, is only performed by certain microorganisms called diazotrophs and is catalyzed by the nitrogenases. A [7Fe-9S-C-Mo-R-homocitrate]-cofactor, designated FeMo-co, provides the catalytic site for N2 reduction in the Mo-dependent nitrogenase. Thus, achieving FeMo-co formation in model eukaryotic organisms, such as Saccharomyces cerevisiae, represents an important milestone toward endowing them with a capacity for Mo-dependent biological nitrogen fixation. A central player in FeMo-co assembly is the scaffold protein NifEN upon which processing of NifB-co, an [8Fe-9S-C] precursor produced by NifB, occurs. Prior work established that NifB-co can be produced in S. cerevisiae mitochondria. In the present work, a library of nifEN genes from diverse diazotrophs was expressed in S. cerevisiae, targeted to mitochondria, and surveyed for their ability to produce soluble NifEN protein complexes. Many such NifEN variants supported FeMo-co formation when heterologously produced in the diazotroph A. vinelandii. However, only three of them accumulated in soluble forms in mitochondria of aerobically cultured S. cerevisiae. Of these, two variants were active in the in vitro FeMo-co synthesis assay. NifEN, NifB, and NifH proteins from different species, all of them produced in and purified from S. cerevisiae mitochondria, were combined to establish successful FeMo-co biosynthetic pathways. These findings demonstrate that combining diverse interspecies nitrogenase FeMo-co assembly components could be an effective and, perhaps, the only approach to achieve and optimize nitrogen fixation in a eukaryotic organism.IMPORTANCEBiological nitrogen fixation, the conversion of inert N2 to metabolically usable NH3, is a process exclusive to diazotrophic microorganisms and relies on the activity of nitrogenases. The assembly of the nitrogenase [7Fe-9S-C-Mo-R-homocitrate]-cofactor (FeMo-co) in a eukaryotic cell is a pivotal milestone that will pave the way to engineer cereals with nitrogen fixing capabilities and therefore independent of nitrogen fertilizers. In this study, we identified NifEN protein complexes that were functional in the model eukaryotic organism Saccharomyces cerevisiae. NifEN is an essential component of the FeMo-co biosynthesis pathway. Furthermore, the FeMo-co biosynthetic pathway was recapitulated in vitro using only proteins expressed in S. cerevisiae. FeMo-co biosynthesis was achieved by combining nitrogenase FeMo-co assembly components from different species, a promising strategy to engineer nitrogen fixation in eukaryotic organisms.
Collapse
Affiliation(s)
- Katarzyna Dobrzyńska
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Carlos Echavarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Diana Coroian
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Alvaro Salinero-Lanzarote
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Marcel Veldhuizen
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Dennis R. Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis M. Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| |
Collapse
|
7
|
Rivier AJ, Myers KS, Garcia AK, Sobol MS, Kaçar B. Regulatory response to a hybrid ancestral nitrogenase in Azotobacter vinelandii. Microbiol Spectr 2023; 11:e0281523. [PMID: 37702481 PMCID: PMC10581106 DOI: 10.1128/spectrum.02815-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
Biological nitrogen fixation, the microbial reduction of atmospheric nitrogen to bioavailable ammonia, represents both a major limitation on biological productivity and a highly desirable engineering target for synthetic biology. However, the engineering of nitrogen fixation requires an integrated understanding of how the gene regulatory dynamics of host diazotrophs respond across sequence-function space of its central catalytic metalloenzyme, nitrogenase. Here, we interrogate this relationship by analyzing the transcriptome of Azotobacter vinelandii engineered with a phylogenetically inferred ancestral nitrogenase protein variant. The engineered strain exhibits reduced cellular nitrogenase activity but recovers wild-type growth rates following an extended lag period. We find that expression of genes within the immediate nitrogen fixation network is resilient to the introduced nitrogenase sequence-level perturbations. Rather the sustained physiological compatibility with the ancestral nitrogenase variant is accompanied by reduced expression of genes that support trace metal and electron resource allocation to nitrogenase. Our results spotlight gene expression changes in cellular processes adjacent to nitrogen fixation as productive engineering considerations to improve compatibility between remodeled nitrogenase proteins and engineered host diazotrophs. IMPORTANCE Azotobacter vinelandii is a key model bacterium for the study of biological nitrogen fixation, an important metabolic process catalyzed by nitrogenase enzymes. Here, we demonstrate that compatibilities between engineered A. vinelandii strains and nitrogenase variants can be modulated at the regulatory level. The engineered strain studied here responds by adjusting the expression of proteins involved in cellular processes adjacent to nitrogen fixation, rather than that of nitrogenase proteins themselves. These insights can inform future strategies to transfer nitrogenase variants to non-native hosts.
Collapse
Affiliation(s)
- Alex J. Rivier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center and the Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amanda K. Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Morgan S. Sobol
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Al-Shami K, Awadi S, Khamees A, Alsheikh AM, Al-Sharif S, Ala’ Bereshy R, Al-Eitan SF, Banikhaled SH, Al-Qudimat AR, Al-Zoubi RM, Al Zoubi MS. Estrogens and the risk of breast cancer: A narrative review of literature. Heliyon 2023; 9:e20224. [PMID: 37809638 PMCID: PMC10559995 DOI: 10.1016/j.heliyon.2023.e20224] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
In female mammals, the development and regulation of the reproductive system and non-reproductive system are significantly influenced by estrogens (oestrogens). In addition, lipid metabolism is another physiological role of estrogens. Estrogens act through different types of receptors to introduce signals to the target cell by affecting many estrogen response elements. Breast cancer is considered mostly a hormone-dependent disease. Approximately 70% of breast cancers express progesterone receptors and/or estrogen receptors, and they are a good marker for cancer prognosis. This review will discuss estrogen metabolism and the interaction of estrogen metabolites with breast cancer. The carcinogenic role of estrogen is discussed in light of both conventional and atypical cancers susceptible to hormones, such as prostate, endometrial, and lung cancer, as we examine how estrogen contributes to the formation and activation of breast cancer. In addition, this review will discuss other factors that can be associated with estrogen-driven breast cancer.
Collapse
Affiliation(s)
- Khayry Al-Shami
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | - Sajeda Awadi
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | - Almu'atasim Khamees
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
- Department of General Surgery, King Hussein Cancer Center, Amman, 11941, Jordan
| | | | - Sumaiya Al-Sharif
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | | | - Sharaf F. Al-Eitan
- Faculty of Medicine, Yarmouk University, P.O Box 566, 21163, Irbid, Jordan
| | | | - Ahmad R. Al-Qudimat
- Department of Public Health, College of Health Sciences, QU-Health, Qatar University, Doha, 2713, Qatar
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha, Qatar
- Department of Biomedical Sciences, College of Health Sciences, QU-Health, Qatar University, Doha, 2713, Qatar
- Department of Chemistry, Jordan University of Science and Technology, P.O.Box 3030, Irbid, 22110, Jordan
| | | |
Collapse
|
9
|
Yang J, Xiang N, Liu Y, Guo C, Li C, Li H, Cai S, Dixon R, Wang YP. Organelle-dependent polyprotein designs enable stoichiometric expression of nitrogen fixation components targeted to mitochondria. Proc Natl Acad Sci U S A 2023; 120:e2305142120. [PMID: 37585462 PMCID: PMC10450427 DOI: 10.1073/pnas.2305142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023] Open
Abstract
Introducing nitrogen fixation (nif ) genes into eukaryotic genomes and targeting Nif components to mitochondria or chloroplasts is a promising strategy for engineering nitrogen-fixing plants. A prerequisite for achieving nitrogen fixation in crops is stable and stoichiometric expression of each component in organelles. Previously, we designed a polyprotein-based nitrogenase system depending on Tobacco Etch Virus protease (TEVp) to release functional Nif components from five polyproteins. Although this system satisfies the demand for specific expression ratios of Nif components in Escherichia coli, we encountered issues with TEVp cleavage of polyproteins targeted to yeast mitochondria. To overcome this obstacle, a version of the Nif polyprotein system was constructed by replacing TEVp cleavage sites with minimal peptide sequences, identified by knowledge-based engineering, that are susceptible to cleavage by the endogenous mitochondrial-processing peptidase. This replacement not only further reduces the number of genes required, but also prevents potential precleavage of polyproteins outside the target organelle. This version of the polyprotein-based nitrogenase system achieved levels of nitrogenase activity in E. coli, comparable to those observed with the TEVp-based polyprotein nitrogenase system. When applied to yeast mitochondria, stable and balanced expression of Nif components was realized. This strategy has potential advantages, not only for transferring nitrogen fixation to eukaryotic cells, but also for the engineering of other metabolic pathways that require mitochondrial compartmentalization.
Collapse
Affiliation(s)
- Jianguo Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Nan Xiang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Yiheng Liu
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Chenyue Guo
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Chenyu Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Hui Li
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Shuyi Cai
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, NR4 7UHNorwich, United Kingdom
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing100871, China
| |
Collapse
|
10
|
Johnston E, Okada S, Gregg CM, Warden AC, Rolland V, Gillespie V, Byrne K, Colgrave ML, Eamens AL, Allen RS, Wood CC. The structural components of the Azotobacter vinelandii iron-only nitrogenase, AnfDKG, form a protein complex within the plant mitochondrial matrix. PLANT MOLECULAR BIOLOGY 2023:10.1007/s11103-023-01363-3. [PMID: 37326800 DOI: 10.1007/s11103-023-01363-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023]
Abstract
A long-held goal of synthetic biology has been the transfer of a bacterial nitrogen-fixation pathway into plants to reduce the use of chemical fertiliser on crops such as rice, wheat and maize. There are three classes of bacterial nitrogenase, named after their metal requirements, containing either a MoFe-, VFe- or FeFe-cofactor, that converts N2 gas to ammonia. Relative to the Mo-nitrogenase the Fe-nitrogenase is not as efficient for catalysis but has less complex genetic and metallocluster requirements, features that may be preferable for engineering into crops. Here we report the successful targeting of bacterial Fe-nitrogenase proteins, AnfD, AnfK, AnfG and AnfH, to plant mitochondria. When expressed as a single protein AnfD was mostly insoluble in plant mitochondria, but coexpression of AnfD with AnfK improved its solubility. Using affinity-based purification of mitochondrially expressed AnfK or AnfG we were able to demonstrate a strong interaction of AnfD with AnfK and a weaker interaction of AnfG with AnfDK. This work establishes that the structural components of the Fe-nitrogenase can be engineered into plant mitochondria and form a complex, which will be a requirement for function. This report outlines the first use of Fe-nitrogenase proteins within a plant as a preliminary step towards engineering an alternative nitrogenase into crops.
Collapse
Affiliation(s)
- E Johnston
- CSIRO Environment, GPO Box 1700, Acton, ACT, 2601, Australia
- School of Environmental and Life Sciences, University of Newcastle, University Dr, Callaghan NSW 2308, Callaghan, Australia
| | - S Okada
- CSIRO Environment, GPO Box 1700, Acton, ACT, 2601, Australia
| | - C M Gregg
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia
| | - A C Warden
- CSIRO Environment, GPO Box 1700, Acton, ACT, 2601, Australia
| | - V Rolland
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia
| | - V Gillespie
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia
| | - K Byrne
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
| | - M L Colgrave
- CSIRO Agriculture and Food, 306 Carmody Rd, St Lucia, QLD, 4067, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - A L Eamens
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, 4558, Australia
| | - R S Allen
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia.
| | - C C Wood
- CSIRO Agriculture and Food, GPO Box 1700, Acton, ACT, 2601, Australia
| |
Collapse
|
11
|
Ahmed N, Ishfaq M, Ali G. Genetic engineering for enhanced biological nitrogen fixation in cereal crops. Trends Biotechnol 2023; 41:473-475. [PMID: 36344382 DOI: 10.1016/j.tibtech.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Enhancing biological nitrogen (N) fixation in cereal crops has been a long-sought objective. Recently, Yan et al. identified plant compounds that induce biofilm production of diazotrophic bacteria and then performed genetic engineering in order to improve nitrogen fixation in rice plants. These findings hold promise for sustainable agriculture.
Collapse
Affiliation(s)
- Nasim Ahmed
- Agricultural Biotechnological Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan; Department of Biotechnology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan.
| | - Muhammad Ishfaq
- Department of Agronomy, The University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ghazanfar Ali
- Department of Biotechnology, The University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| |
Collapse
|
12
|
Martin Del Campo JS, Rigsbee J, Bueno Batista M, Mus F, Rubio LM, Einsle O, Peters JW, Dixon R, Dean DR, Dos Santos PC. Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in Azotobacter vinelandii. Crit Rev Biochem Mol Biol 2023; 57:492-538. [PMID: 36877487 DOI: 10.1080/10409238.2023.2181309] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.
Collapse
Affiliation(s)
| | - Jack Rigsbee
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | | - Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Oliver Einsle
- Department of Biochemistry, University of Freiburg, Freiburg, Germany
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
13
|
Jhu MY, Oldroyd GED. Dancing to a different tune, can we switch from chemical to biological nitrogen fixation for sustainable food security? PLoS Biol 2023; 21:e3001982. [PMID: 36917569 PMCID: PMC10013914 DOI: 10.1371/journal.pbio.3001982] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Our current food production systems are unsustainable, driven in part through the application of chemically fixed nitrogen. We need alternatives to empower farmers to maximise their productivity sustainably. Therefore, we explore the potential for transferring the root nodule symbiosis from legumes to other crops. Studies over the last decades have shown that preexisting developmental and signal transduction processes were recruited during the evolution of legume nodulation. This allows us to utilise these preexisting processes to engineer nitrogen fixation in target crops. Here, we highlight our understanding of legume nodulation and future research directions that might help to overcome the barrier of achieving self-fertilising crops.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Giles E. D. Oldroyd
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Santos CS, Habyarimana E, Vasconcelos MW. Editorial: The impact of climate change on nutrient composition of staple foods and the role of diversification in increasing food system resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1087712. [PMID: 36755693 PMCID: PMC9900100 DOI: 10.3389/fpls.2023.1087712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Carla S. Santos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ephrem Habyarimana
- Sorghum Breeding, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
15
|
Watanabe Y, Aoki W, Ueda M. Ammonia Production Using Bacteria and Yeast toward a Sustainable Society. Bioengineering (Basel) 2023; 10:82. [PMID: 36671654 PMCID: PMC9854848 DOI: 10.3390/bioengineering10010082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Ammonia is an important chemical that is widely used in fertilizer applications as well as in the steel, chemical, textile, and pharmaceutical industries, which has attracted attention as a potential fuel. Thus, approaches to achieve sustainable ammonia production have attracted considerable attention. In particular, biological approaches are important for achieving a sustainable society because they can produce ammonia under mild conditions with minimal environmental impact compared with chemical methods. For example, nitrogen fixation by nitrogenase in heterogeneous hosts and ammonia production from food waste using microorganisms have been developed. In addition, crop production using nitrogen-fixing bacteria has been considered as a potential approach to achieving a sustainable ammonia economy. This review describes previous research on biological ammonia production and provides insights into achieving a sustainable society.
Collapse
Affiliation(s)
- Yukio Watanabe
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Wataru Aoki
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Guo Y, Jiang Y, Rose JB, Nagaraju GP, Jaskula-Sztul R, Hjelmeland AB, Beck AW, Chen H, Ren B. Protein Kinase D1 Signaling in Cancer Stem Cells with Epithelial-Mesenchymal Plasticity. Cells 2022; 11:3885. [PMID: 36497140 PMCID: PMC9739736 DOI: 10.3390/cells11233885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are extremely diverse and highly vascularized neoplasms that arise from endocrine cells in the pancreas. The pNETs harbor a subpopulation of stem cell-like malignant cells, known as cancer stem cells (CSCs), which contribute to intratumoral heterogeneity and promote tumor maintenance and recurrence. In this study, we demonstrate that CSCs in human pNETs co-express protein kinase PKD1 and CD44. We further identify PKD1 signaling as a critical pathway in the control of CSC maintenance in pNET cells. PKD1 signaling regulates the expression of a CSC- and EMT-related gene signature and promotes CSC self-renewal, likely leading to the preservation of a subpopulation of CSCs at an intermediate EMT state. This suggests that the PKD1 signaling pathway may be required for the development of a unique CSC phenotype with plasticity and partial EMT. Given that the signaling networks connected with CSC maintenance and EMT are complex, and extend through multiple levels of regulation, this study provides insight into signaling regulation of CSC plasticity and partial EMT in determining the fate of CSCs. Inhibition of the PKD1 pathway may facilitate the elimination of specific CSC subsets, thereby curbing tumor progression and metastasis.
Collapse
Affiliation(s)
- Yichen Guo
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yinan Jiang
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J. Bart Rose
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ganji Purnachandra Nagaraju
- Department of Medicine, Division of Hematology and Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B. Hjelmeland
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam W. Beck
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Herbert Chen
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bin Ren
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- GBS Biomedical Engineering Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
17
|
Baysal C, Burén S, He W, Jiang X, Capell T, Rubio LM, Christou P. Functional expression of the nitrogenase Fe protein in transgenic rice. Commun Biol 2022; 5:1006. [PMID: 36198910 PMCID: PMC9534833 DOI: 10.1038/s42003-022-03921-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Engineering cereals to express functional nitrogenase is a long-term goal of plant biotechnology and would permit partial or total replacement of synthetic N fertilizers by metabolization of atmospheric N2. Developing this technology is hindered by the genetic and biochemical complexity of nitrogenase biosynthesis. Nitrogenase and many of the accessory proteins involved in its assembly and function are O2 sensitive and only sparingly soluble in non-native hosts. We generated transgenic rice plants expressing the nitrogenase structural component, Fe protein (NifH), which carries a [4Fe-4S] cluster in its active form. NifH from Hydrogenobacter thermophilus was targeted to mitochondria together with the putative peptidyl prolyl cis-trans isomerase NifM from Azotobacter vinelandii to assist in NifH polypeptide folding. The isolated NifH was partially active in electron transfer to the MoFe protein nitrogenase component (NifDK) and in the biosynthesis of the nitrogenase iron-molybdenum cofactor (FeMo-co), two fundamental roles for NifH in N2 fixation. NifH functionality was, however, limited by poor [4Fe-4S] cluster occupancy, highlighting the importance of in vivo [Fe-S] cluster insertion and stability to achieve biological N2 fixation in planta. Nevertheless, the expression and activity of a nitrogenase component in rice plants represents the first major step to engineer functional nitrogenase in cereal crops.
Collapse
Affiliation(s)
- Can Baysal
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- Department of Genetics, Cell Biology and Development, University of Minnesota, St. Paul, MN, USA
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Wenshu He
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Xi Jiang
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain.
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
18
|
He W, Burén S, Baysal C, Jiang X, Capell T, Christou P, Rubio LM. Nitrogenase Cofactor Maturase NifB Isolated from Transgenic Rice is Active in FeMo-co Synthesis. ACS Synth Biol 2022; 11:3028-3036. [PMID: 35998307 PMCID: PMC9486962 DOI: 10.1021/acssynbio.2c00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The engineering of nitrogen fixation in plants requires assembly of an active prokaryotic nitrogenase complex, which is yet to be achieved. Nitrogenase biogenesis relies on NifB, which catalyzes the formation of the [8Fe-9S-C] metal cluster NifB-co. This is the first committed step in the biosynthesis of the iron-molybdenum cofactor (FeMo-co) found at the nitrogenase active site. The production of NifB in plants is challenging because this protein is often insoluble in eukaryotic cells, and its [Fe-S] clusters are extremely unstable and sensitive to O2. As a first step to address this challenge, we generated transgenic rice plants expressing NifB from the Archaea Methanocaldococcus infernus and Methanothermobacter thermautotrophicus. The recombinant proteins were targeted to the mitochondria to limit exposure to O2 and to have access to essential [4Fe-4S] clusters required for NifB-co biosynthesis. M. infernus and M. thermautotrophicus NifB accumulated as soluble proteins in planta, and the purified proteins were functional in the in vitro FeMo-co synthesis assay. We thus report NifB protein expression and purification from an engineered staple crop, representing a first step in the biosynthesis of a functional NifDK complex, as required for independent biological nitrogen fixation in cereals.
Collapse
Affiliation(s)
- Wenshu He
- Department
of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Stefan Burén
- Centro
de Biotecnología y Genómica de Plantas, Universidad
Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria y Alimentaria
(INIA), Campus Montegancedo
UPM, Pozuelo de Alarcón, 28223 , Madrid, Spain,Departamento
de Biotecnología-Biología Vegetal, Escuela Técnica
Superior de Ingeniería Agronómica, Alimentaria y de
Biosistemas, Universidad Politécnica
de Madrid, 28040 Madrid, Spain
| | - Can Baysal
- Department
of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Xi Jiang
- Centro
de Biotecnología y Genómica de Plantas, Universidad
Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria y Alimentaria
(INIA), Campus Montegancedo
UPM, Pozuelo de Alarcón, 28223 , Madrid, Spain,Departamento
de Biotecnología-Biología Vegetal, Escuela Técnica
Superior de Ingeniería Agronómica, Alimentaria y de
Biosistemas, Universidad Politécnica
de Madrid, 28040 Madrid, Spain
| | - Teresa Capell
- Department
of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain
| | - Paul Christou
- Department
of Plant Production and Forestry Science, University of Lleida-Agrotecnio CERCA Center, Av. Alcalde Rovira Roure, 191, 25198 Lleida, Spain,ICREA,
Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010 Barcelona, Spain,
| | - Luis M. Rubio
- Centro
de Biotecnología y Genómica de Plantas, Universidad
Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria y Alimentaria
(INIA), Campus Montegancedo
UPM, Pozuelo de Alarcón, 28223 , Madrid, Spain,Departamento
de Biotecnología-Biología Vegetal, Escuela Técnica
Superior de Ingeniería Agronómica, Alimentaria y de
Biosistemas, Universidad Politécnica
de Madrid, 28040 Madrid, Spain,
| |
Collapse
|
19
|
de Lorenzo V. Environmental Galenics: large-scale fortification of extant microbiomes with engineered bioremediation agents. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210395. [PMID: 35757882 PMCID: PMC9234819 DOI: 10.1098/rstb.2021.0395] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Contemporary synthetic biology-based biotechnologies are generating tools and strategies for reprogramming genomes for specific purposes, including improvement and/or creation of microbial processes for tackling climate change. While such activities typically work well at a laboratory or bioreactor scale, the challenge of their extensive delivery to multiple spatio-temporal dimensions has hardly been tackled thus far. This state of affairs creates a research niche for what could be called Environmental Galenics (EG), i.e. the science and technology of releasing designed biological agents into deteriorated ecosystems for the sake of their safe and effective recovery. Such endeavour asks not just for an optimal performance of the biological activity at stake, but also the material form and formulation of the agents, their propagation and their interplay with the physico-chemical scenario where they are expected to perform. EG also encompasses adopting available physical carriers of microorganisms and channels of horizontal gene transfer as potential paths for spreading beneficial activities through environmental microbiomes. While some of these propositions may sound unsettling to anti-genetically modified organisms sensitivities, they may also fall under the tag of TINA (there is no alternative) technologies in the cases where a mere reduction of emissions will not help the revitalization of irreversibly lost ecosystems. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
Collapse
Affiliation(s)
- Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
20
|
Genome-Wide Characterization of Nitrogenase Reductase (nifH) Genes in the Sweet Potato [Ipomoea batatas (L.) Lam] and Its Wild Ancestors. Genes (Basel) 2022; 13:genes13081428. [PMID: 36011339 PMCID: PMC9407934 DOI: 10.3390/genes13081428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 02/07/2023] Open
Abstract
The sweet potato (Ipomoea batatas (L.) Lam.) is an important and widely grown crop, and the nitrogenase reductase (nifH) gene is the most widely sequenced marker gene used to identify nitrogen-fixing bacteria and archaea. There have been many examples of the isolation of the diazotrophic endophytes in sweet potatoes, and there has been no report on whether sweet potatoes and their wild ancestors harbored nifH genes. In this study, a comprehensive analysis of nifH genes has been conducted on these species by using bioinformatics and molecular biology methods. A total of 20, 19 and 17 nifH genes were identified for the first time in sweet potatoes, I. trifida and I. triloba, respectively. Based on a phylogenetic analysis, all of the nifH genes, except for g10233.t1, itf14g14040.t1 and itb14g15470.t1, were clustered into five independent clades: I, II, III, IV and V. The nifH genes clustered in the same phylogenetic branch showed a more similar distribution of conserved motifs and exons–introns than those of the other ones. All of the identified genes were further mapped on the 15 chromosomes of the sweet potato, I. trifida and I. triloba. No segmental duplication was detected in each genome of three Ipomoea species, and 0, 8 and 7 tandemly duplicated gene pairs were detected in the genome of the sweet potato, I. trifida and I. triloba, respectively. Synteny analysis between the three Ipomoea species revealed that there were 7, 7 and 8 syntenic gene pairs of nifH genes detected between the sweet potato and I. trifida, between the sweet potato and I. triloba and between I. trifida and I. triloba, respectively. All of the duplicated and syntenic nifH genes were subjected to purifying selection inside duplicated genomic elements during speciation, except for the tandemly duplicated gene pair itf11g07340.t2_itf11g07340.t3, which was subjected to positive selection. Different expression profiles were detected in the sweet potato, I. trifida and I. triloba. According to the above results, four nifH genes of the sweet potato (g950, g16683, g27094 and g33987) were selected for quantitative real-time polymerase chain reaction (qRT-PCR) analysis in two sweet potato cultivars (Eshu 15 and Long 9) under nitrogen deficiency (N0) and normal (N1) conditions. All of them were upregulated in the N1 treatment and were consistent with the analysis of the RNA-seq data. We hope that these results will provide new insights into the nifH genes in the sweet potato and its wild ancestors and will contribute to the molecular breeding of sweet potatoes in the future.
Collapse
|
21
|
Smit SJ, Lichman BR. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat Prod Rep 2022; 39:1465-1482. [PMID: 35441651 PMCID: PMC9298681 DOI: 10.1039/d2np00005a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Covering: up to 2022Plants produce a wide range of structurally and biosynthetically diverse natural products to interact with their environment. These specialised metabolites typically evolve in limited taxonomic groups presumably in response to specific selective pressures. With the increasing availability of sequencing data, it has become apparent that in many cases the genes encoding biosynthetic enzymes for specialised metabolic pathways are not randomly distributed on the genome. Instead they are physically linked in structures such as arrays, pairs and clusters. The exact function of these clusters is debated. In this review we take a broad view of gene arrangement in plant specialised metabolism, examining types of structures and variation. We discuss the evolution of biosynthetic gene clusters in the wider context of metabolism, populations and epigenetics. Finally, we synthesise our observations to propose a new hypothesis for biosynthetic gene cluster formation in plants.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
22
|
Ladha JK, Peoples MB, Reddy PM, Biswas JC, Bennett A, Jat ML, Krupnik TJ. Biological nitrogen fixation and prospects for ecological intensification in cereal-based cropping systems. FIELD CROPS RESEARCH 2022; 283:108541. [PMID: 35782167 PMCID: PMC9133800 DOI: 10.1016/j.fcr.2022.108541] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 05/02/2023]
Abstract
The demand for nitrogen (N) for crop production increased rapidly from the middle of the twentieth century and is predicted to at least double by 2050 to satisfy the on-going improvements in productivity of major food crops such as wheat, rice and maize that underpin the staple diet of most of the world's population. The increased demand will need to be fulfilled by the two main sources of N supply - biological nitrogen (gas) (N2) fixation (BNF) and fertilizer N supplied through the Haber-Bosch processes. BNF provides many functional benefits for agroecosystems. It is a vital mechanism for replenishing the reservoirs of soil organic N and improving the availability of soil N to support crop growth while also assisting in efforts to lower negative environmental externalities than fertilizer N. In cereal-based cropping systems, legumes in symbiosis with rhizobia contribute the largest BNF input; however, diazotrophs involved in non-symbiotic associations with plants or present as free-living N2-fixers are ubiquitous and also provide an additional source of fixed N. This review presents the current knowledge of BNF by free-living, non-symbiotic and symbiotic diazotrophs in the global N cycle, examines global and regional estimates of contributions of BNF, and discusses possible strategies to enhance BNF for the prospective benefit of cereal N nutrition. We conclude by considering the challenges of introducing in planta BNF into cereals and reflect on the potential for BNF in both conventional and alternative crop management systems to encourage the ecological intensification of cereal and legume production.
Collapse
Affiliation(s)
- Jagdish K. Ladha
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mark B. Peoples
- Commonwealth Scientific and Industrial Research Organisation, Canberra, Australia
| | | | | | - Alan Bennett
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mangi L. Jat
- International Maize and Wheat Improvement Center, New Delhi, India
| | | |
Collapse
|
23
|
Jiang X, Coroian D, Barahona E, Echavarri-Erasun C, Castellanos-Rueda R, Eseverri Á, Aznar-Moreno JA, Burén S, Rubio LM. Functional Nitrogenase Cofactor Maturase NifB in Mitochondria and Chloroplasts of Nicotiana benthamiana. mBio 2022; 13:e0026822. [PMID: 35695456 PMCID: PMC9239050 DOI: 10.1128/mbio.00268-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Engineering plants to synthesize nitrogenase and assimilate atmospheric N2 will reduce crop dependency on industrial N fertilizers. This technology can be achieved by expressing prokaryotic nitrogen fixation gene products for the assembly of a functional nitrogenase in plants. NifB is a critical nitrogenase component since it catalyzes the first committed step in the biosynthesis of all types of nitrogenase active-site cofactors. Here, we used a library of 30 distinct nifB sequences originating from different phyla and ecological niches to restore diazotrophic growth of an Azotobacter vinelandii nifB mutant. Twenty of these variants rescued the nifB mutant phenotype despite their phylogenetic distance to A. vinelandii. Because multiple protein interactions are required in the iron-molybdenum cofactor (FeMo-co) biosynthetic pathway, the maturation of nitrogenase in a heterologous host can be divided in independent modules containing interacting proteins that function together to produce a specific intermediate. Therefore, nifB functional modules composed of a nifB variant, together with the A. vinelandii NifS and NifU proteins (for biosynthesis of NifB [Fe4S4] clusters) and the FdxN ferredoxin (for NifB function), were expressed in Nicotiana benthamiana chloroplasts and mitochondria. Three archaeal NifB proteins accumulated at high levels in soluble fractions of chloroplasts (Methanosarcina acetivorans and Methanocaldococcus infernus) or mitochondria (M. infernus and Methanothermobacter thermautotrophicus). These NifB proteins were shown to accept [Fe4S4] clusters from NifU and were functional in FeMo-co synthesis in vitro. The accumulation of significant levels of soluble and functional NifB proteins in chloroplasts and mitochondria is critical to engineering biological nitrogen fixation in plants. IMPORTANCE Biological nitrogen fixation is the conversion of inert atmospheric dinitrogen gas into nitrogen-reactive ammonia, a reaction catalyzed by the nitrogenase enzyme of diazotrophic bacteria and archaea. Because plants cannot fix their own nitrogen, introducing functional nitrogenase in cereals and other crop plants would reduce our strong dependency on N fertilizers. NifB is required for the biosynthesis of the active site cofactors of all nitrogenases, which arguably makes it the most important protein in global nitrogen fixation. NifB functionality is therefore a requisite to engineer a plant nitrogenase. The expression of nifB genes from a wide range of prokaryotes into the model diazotroph Azotobacter vinelandii shows a surprising level of genetic complementation suggestive of plasticity in the nitrogenase biosynthetic pathway. In addition, we obtained NifB proteins from both mitochondria and chloroplasts of tobacco that are functional in vitro after reconstitution by providing [Fe4S4] clusters from NifU, paving the way to nitrogenase cofactor biosynthesis in plants.
Collapse
Affiliation(s)
- Xi Jiang
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Diana Coroian
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Emma Barahona
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Carlos Echavarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Rocío Castellanos-Rueda
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Álvaro Eseverri
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Jose A. Aznar-Moreno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Luis M. Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
24
|
Payá-Tormo L, Coroian D, Martín-Muñoz S, Badalyan A, Green RT, Veldhuizen M, Jiang X, López-Torrejón G, Balk J, Seefeldt LC, Burén S, Rubio LM. A colorimetric method to measure in vitro nitrogenase functionality for engineering nitrogen fixation. Sci Rep 2022; 12:10367. [PMID: 35725884 PMCID: PMC9209457 DOI: 10.1038/s41598-022-14453-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022] Open
Abstract
Biological nitrogen fixation (BNF) is the reduction of N2 into NH3 in a group of prokaryotes by an extremely O2-sensitive protein complex called nitrogenase. Transfer of the BNF pathway directly into plants, rather than by association with microorganisms, could generate crops that are less dependent on synthetic nitrogen fertilizers and increase agricultural productivity and sustainability. In the laboratory, nitrogenase activity is commonly determined by measuring ethylene produced from the nitrogenase-dependent reduction of acetylene (ARA) using a gas chromatograph. The ARA is not well suited for analysis of large sample sets nor easily adapted to automated robotic determination of nitrogenase activities. Here, we show that a reduced sulfonated viologen derivative (S2Vred) assay can replace the ARA for simultaneous analysis of isolated nitrogenase proteins using a microplate reader. We used the S2Vred to screen a library of NifH nitrogenase components targeted to mitochondria in yeast. Two NifH proteins presented properties of great interest for engineering of nitrogen fixation in plants, namely NifM independency, to reduce the number of genes to be transferred to the eukaryotic host; and O2 resistance, to expand the half-life of NifH iron-sulfur cluster in a eukaryotic cell. This study established that NifH from Dehalococcoides ethenogenes did not require NifM for solubility, [Fe-S] cluster occupancy or functionality, and that NifH from Geobacter sulfurreducens was more resistant to O2 exposure than the other NifH proteins tested. It demonstrates that nitrogenase components with specific biochemical properties such as a wider range of O2 tolerance exist in Nature, and that their identification should be an area of focus for the engineering of nitrogen-fixing crops.
Collapse
Affiliation(s)
- Lucía Payá-Tormo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Crta M-40 km 38 Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Diana Coroian
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Crta M-40 km 38 Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Silvia Martín-Muñoz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Crta M-40 km 38 Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Artavazd Badalyan
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Robert T Green
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, UK
| | - Marcel Veldhuizen
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Crta M-40 km 38 Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Xi Jiang
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Crta M-40 km 38 Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Gema López-Torrejón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Crta M-40 km 38 Pozuelo de Alarcón, 28223, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Janneke Balk
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, NR4 7UH, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Stefan Burén
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Crta M-40 km 38 Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo UPM, Crta M-40 km 38 Pozuelo de Alarcón, 28223, Madrid, Spain.
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
| |
Collapse
|
25
|
Takimoto R, Tatemichi Y, Aoki W, Kosaka Y, Minakuchi H, Ueda M, Kuroda K. A critical role of an oxygen-responsive gene for aerobic nitrogenase activity in Azotobacter vinelandii and its application to Escherichia coli. Sci Rep 2022; 12:4182. [PMID: 35264690 PMCID: PMC8907163 DOI: 10.1038/s41598-022-08007-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Since nitrogenase is irreversibly inactivated within a few minutes after exposure to oxygen, current studies on the heterologous expression of nitrogenase are limited to anaerobic conditions. This study comprehensively identified genes showing oxygen-concentration-dependent expression only under nitrogen-fixing conditions in Azotobacter vinelandii, an aerobic diazotroph. Among the identified genes, nafU, with an unknown function, was greatly upregulated under aerobic nitrogen-fixing conditions. Through replacement and overexpressing experiments, we suggested that nafU is involved in the maintenance of nitrogenase activity under aerobic nitrogenase activity. Furthermore, heterologous expression of nafU in nitrogenase-producing Escherichia coli increased nitrogenase activity under aerobic conditions by 9.7 times. Further analysis of NafU protein strongly suggested its localization in the inner membrane and raised the possibility that this protein may lower the oxygen concentration inside the cells. These findings provide new insights into the mechanisms for maintaining stable nitrogenase activity under aerobic conditions in A. vinelandii and provide a platform to advance the use of nitrogenase under aerobic conditions.
Collapse
Affiliation(s)
- Ren Takimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuki Tatemichi
- Research and Development Division, Kikkoman Corporation, 338 Noda, Noda, Chiba, 278-0037, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuishin Kosaka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
26
|
Suquilanda-Pesántez JD, Aguiar Salazar ED, Almeida-Galárraga D, Salum G, Villalba-Meneses F, Gudiño Gomezjurado ME. NIFtHool: an informatics program for identification of NifH proteins using deep neural networks. F1000Res 2022; 11:164. [PMID: 35360826 PMCID: PMC8956849 DOI: 10.12688/f1000research.107925.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/20/2022] Open
Abstract
Atmospheric nitrogen fixation carried out by microorganisms has environmental and industrial importance, related to the increase of soil fertility and productivity. The present work proposes the development of a new high precision system that allows the recognition of amino acid sequences of the nitrogenase enzyme (NifH) as a promising way to improve the identification of diazotrophic bacteria. For this purpose, a database obtained from UniProt built a processed dataset formed by a set of 4911 and 4782 amino acid sequences of the NifH and non-NifH
proteins respectively. Subsequently, the feature extraction was developed using two methodologies: (i) k-mers counting and (ii) embedding layers to obtain numerical vectors of the amino acid chains. Afterward, for the embedding layer, the data was crossed by an external trainable convolutional layer, which received a uniform matrix and applied convolution using filters to obtain the feature maps of the model. Finally, a deep neural network was used as the primary model to classify the amino acid sequences as NifH protein or not. Performance evaluation experiments were carried out, and the results revealed an accuracy of 96.4%, a sensitivity of 95.2%, and a specificity of 96.7%. Therefore, an amino acid sequence-based feature extraction method that uses a neural network to detect N-fixing organisms is proposed and implemented. NIFtHool is available from:
https://nifthool.anvil.app/
Collapse
Affiliation(s)
| | - Evelyn Dayana Aguiar Salazar
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Diego Almeida-Galárraga
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Graciela Salum
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Fernando Villalba-Meneses
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| | - Marco Esteban Gudiño Gomezjurado
- Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Urcuquí, Imbabura, 100115, Ecuador
| |
Collapse
|
27
|
Teixeira AAR, D'Angelo S, Erasmus MF, Leal-Lopes C, Ferrara F, Spector LP, Naranjo L, Molina E, Max T, DeAguero A, Perea K, Stewart S, Buonpane RA, Nastri HG, Bradbury ARM. Simultaneous affinity maturation and developability enhancement using natural liability-free CDRs. MAbs 2022; 14:2115200. [PMID: 36068722 PMCID: PMC9467613 DOI: 10.1080/19420862.2022.2115200] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Affinity maturation is often a necessary step for the development of potent therapeutic molecules. Many different diversification strategies have been used for antibody affinity maturation, including error-prone PCR, chain shuffling, and targeted complementary-determining region (CDR) mutation. Although effective, they can negatively impact antibody stability or alter epitope recognition. Moreover, they do not address the presence of sequence liabilities, such as glycosylation, asparagine deamidation, aspartate isomerization, aggregation motifs, and others. Such liabilities, if present or inadvertently introduced, can potentially create the need for new rounds of engineering, or even abolish the value of the antibody as a therapeutic molecule. Here, we demonstrate a sequence agnostic method to improve antibody affinities, while simultaneously eliminating sequence liabilities and retaining the same epitope binding as the parental antibody. This was carried out using a defined collection of natural CDRs as the diversity source, purged of sequence liabilities, and matched to the antibody germline gene family. These CDRs were inserted into the lead molecule in one or two sites at a time (LCDR1-2, LCDR3, HCDR1-2) while retaining the HCDR3 and framework regions unchanged. The final analysis of 92 clones revealed 81 unique variants, with each of 24 tested variants having the same epitope specificity as the parental molecule. Of these, the average affinity improved by over 100 times (to 96 pM), and the best affinity improvement was 231-fold (to 32 pM).
Collapse
|
28
|
Shomar H, Bokinsky G. Towards a Synthetic Biology Toolset for Metallocluster Enzymes in Biosynthetic Pathways: What We Know and What We Need. Molecules 2021; 26:molecules26226930. [PMID: 34834021 PMCID: PMC8617995 DOI: 10.3390/molecules26226930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
Microbes are routinely engineered to synthesize high-value chemicals from renewable materials through synthetic biology and metabolic engineering. Microbial biosynthesis often relies on expression of heterologous biosynthetic pathways, i.e., enzymes transplanted from foreign organisms. Metallocluster enzymes are one of the most ubiquitous family of enzymes involved in natural product biosynthesis and are of great biotechnological importance. However, the functional expression of recombinant metallocluster enzymes in live cells is often challenging and represents a major bottleneck. The activity of metallocluster enzymes requires essential supporting pathways, involved in protein maturation, electron supply, and/or enzyme stability. Proper function of these supporting pathways involves specific protein-protein interactions that remain poorly characterized and are often overlooked by traditional synthetic biology approaches. Consequently, engineering approaches that focus on enzymatic expression and carbon flux alone often overlook the particular needs of metallocluster enzymes. This review highlights the biotechnological relevance of metallocluster enzymes and discusses novel synthetic biology strategies to advance their industrial application, with a particular focus on iron-sulfur cluster enzymes. Strategies to enable functional heterologous expression and enhance recombinant metallocluster enzyme activity in industrial hosts include: (1) optimizing specific maturation pathways; (2) improving catalytic stability; and (3) enhancing electron transfer. In addition, we suggest future directions for developing microbial cell factories that rely on metallocluster enzyme catalysis.
Collapse
Affiliation(s)
- Helena Shomar
- INSERM U722, Faculté de Médecine, Université de Paris, Site Xavier Bichat, 75018 Paris, France
- Correspondence: (H.S.); (G.B.)
| | - Gregory Bokinsky
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
- Correspondence: (H.S.); (G.B.)
| |
Collapse
|
29
|
Priyadarshini P, Choudhury S, Tilgam J, Bharati A, Sreeshma N. Nitrogen fixing cereal: A rising hero towards meeting food security. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:912-920. [PMID: 34547550 DOI: 10.1016/j.plaphy.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen serves as one of the primary components of major biomolecules and thus extends a significant contribution to crop growth and yield. But the inability of plants to utilize freely available atmospheric N2 makes the whole agricultural system dependent on chemical fertilizers, which incur significant input cost to supplement required quantities of nitrogen to crops. Only bacteria and archaea have been gifted with the power of drawing free N2 from air to convert them into NH3, which is one of the two utilizable forms of nitrogen taken up by plants. Legumes, the only family of crops, can engage themselves in symbiotic nitrogen fixation where they establish a mutualistic relationship with nitrogen-fixing bacteria and in turn, can waive off the necessity of adding nitrogen fertilizers. Sincere effort, therefore, has been undertaken to incorporate this capability of nitrogen-fixation into non-legume crops, especially cereals which make up a vital portion in the food basket. Biotechnological interventions have also played important role in providing nitrogen fixing trait to non-legumes. This review takes up an effort to look into and accumulate all the important updates to date regarding nitrogen-fixing non-legumes with a special focus on cereals, which is one of the most important future goals in the field of science in the present era.
Collapse
Affiliation(s)
- Parichita Priyadarshini
- ICAR-Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi, U.P., 284003, India
| | - Sharani Choudhury
- ICAR - National Institute for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Jyotsana Tilgam
- ICAR- National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, U.P., 274103, India.
| | - Alka Bharati
- ICAR-Central Agroforestry Research Institute, Jhansi, U.P., 284003, India
| | - N Sreeshma
- ICAR - National Institute for Plant Biotechnology, Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
30
|
Larrea-Álvarez M, Purton S. The Chloroplast of Chlamydomonas reinhardtii as a Testbed for Engineering Nitrogen Fixation into Plants. Int J Mol Sci 2021; 22:8806. [PMID: 34445505 PMCID: PMC8395883 DOI: 10.3390/ijms22168806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic organisms such as plants are unable to utilise nitrogen gas (N2) directly as a source of this essential element and are dependent either on its biological conversion to ammonium by diazotrophic prokaryotes, or its supply as chemically synthesised nitrate fertiliser. The idea of genetically engineering crops with the capacity to fix N2 by introduction of the bacterial nitrogenase enzyme has long been discussed. However, the expression of an active nitrogenase must overcome several major challenges: the coordinated expression of multiple genes to assemble an enzyme complex containing several different metal cluster co-factors; the supply of sufficient ATP and reductant to the enzyme; the enzyme's sensitivity to oxygen; and the intracellular accumulation of ammonium. The chloroplast of plant cells represents an attractive location for nitrogenase expression, but engineering the organelle's genome is not yet feasible in most crop species. However, the unicellular green alga Chlamydomonas reinhardtii represents a simple model for photosynthetic eukaryotes with a genetically tractable chloroplast. In this review, we discuss the main advantages, and limitations, of this microalga as a testbed for producing such a complex multi-subunit enzyme. Furthermore, we suggest that a minimal set of six transgenes are necessary for chloroplast-localised synthesis of an 'Fe-only' nitrogenase, and from this set we demonstrate the stable expression and accumulation of the homocitrate synthase, NifV, under aerobic conditions. Arguably, further studies in C. reinhardtii aimed at testing expression and function of the full gene set would provide the groundwork for a concerted future effort to create nitrogen-fixing crops.
Collapse
Affiliation(s)
- Marco Larrea-Álvarez
- School of Biological Sciences and Engineering, Yachay-Tech University Hacienda San José, Urcuquí-Imbabura 100650, Ecuador;
- Algal Research Group, Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Saul Purton
- Algal Research Group, Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
31
|
López‐Torrejón G, Burén S, Veldhuizen M, Rubio LM. Biosynthesis of cofactor-activatable iron-only nitrogenase in Saccharomyces cerevisiae. Microb Biotechnol 2021; 14:1073-1083. [PMID: 33507628 PMCID: PMC8085987 DOI: 10.1111/1751-7915.13758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
Engineering nitrogenase in eukaryotes is hampered by its genetic complexity and by the oxygen sensitivity of its protein components. Of the three types of nitrogenases, the Fe-only nitrogenase is considered the simplest one because its function depends on fewer gene products than the homologous and more complex Mo and V nitrogenases. Here, we show the expression of stable Fe-only nitrogenase component proteins in the low-oxygen mitochondria matrix of S. cerevisiae. As-isolated Fe protein (AnfH) was active in electron donation to NifDK to reduce acetylene into ethylene. Ancillary proteins NifU, NifS and NifM were not required for Fe protein function. The FeFe protein existed as apo-AnfDK complex with the AnfG subunit either loosely bound or completely unable to interact with it. Apo-AnfDK could be activated for acetylene reduction by the simple addition of FeMo-co in vitro, indicating preexistence of the P-clusters even in the absence of coexpressed NifU and NifS. This work reinforces the use of Fe-only nitrogenase as simple model to engineer nitrogen fixation in yeast and plant mitochondria.
Collapse
Affiliation(s)
- Gema López‐Torrejón
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Pozuelo de Alarcón, Madrid28223Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaría y de BiosistemasUPMMadridSpain
| | - Stefan Burén
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Pozuelo de Alarcón, Madrid28223Spain
| | - Marcel Veldhuizen
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Pozuelo de Alarcón, Madrid28223Spain
| | - Luis M. Rubio
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Pozuelo de Alarcón, Madrid28223Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería AgronómicaAlimentaría y de BiosistemasUPMMadridSpain
| |
Collapse
|