1
|
Lust K, Tanaka EM. Adeno-associated viruses for efficient gene expression in the axolotl nervous system. Proc Natl Acad Sci U S A 2025; 122:e2421373122. [PMID: 40042904 PMCID: PMC11912378 DOI: 10.1073/pnas.2421373122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Axolotls are amphibian models for studying nervous system evolution, development, and regeneration. Tools to visualize and manipulate cells of the axolotl nervous system with high-efficiency, spatial and temporal precision are therefore greatly required. Recombinant adeno-associated viruses (AAVs) are frequently used for in vivo gene transfer of the nervous system but virus-mediated gene delivery to the axolotl nervous system has not yet been described. Here, we demonstrate the use of AAVs for efficient gene transfer within the axolotl brain, the spinal cord, and the retina. We show that serotypes AAV8, AAV9, and AAVPHP.eB are suitable viral vectors to infect both excitatory and inhibitory neuronal populations of the axolotl brain. We further use AAV9 to trace retrograde and anterograde projections between the retina and the brain and identify a cell population projecting from the brain to the retina. Together, our work establishes AAVs as a powerful tool to interrogate neuronal organization in the axolotl.
Collapse
Affiliation(s)
- Katharina Lust
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna1030, Austria
| | - Elly M. Tanaka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna1030, Austria
| |
Collapse
|
2
|
Zhou Z, Tang Y, Li R, Wang W, Dai Z. Hovering flight regulation of pigeon robots in laboratory and field. iScience 2024; 27:110927. [PMID: 39391728 PMCID: PMC11465124 DOI: 10.1016/j.isci.2024.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/11/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Compared to traditional bio-mimic robots, animal robots show superior locomotion, energy efficiency, and adaptability to complex environments but most remained in laboratory stage, needing further development for practical applications like exploration and inspection. Our pigeon robots validated in both laboratory and field, tested with an electrical stimulus unit (2-s duration, 0.5 ms pulse width, 80 Hz frequency). In a fixed stimulus procedure, hovering flight was conducted with 8 stimulus units applied every 2 s after flew over the trigger boundary. In a flexible procedure, stimulus was applied whenever they deviated from a virtual circle, with pulse width gains of 0.1 ms or 0.2 ms according to the trajectory angle. These optimized protocols achieved a success hovering rate of 87.5% and circle curvatures of 0.008 m-1-0.024 m-1, largely advancing the practical application of animal robots.
Collapse
Affiliation(s)
- Zhengyue Zhou
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Yezhong Tang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
- Chengdu Institute of Biology, Chinese Academy of Sciences. No.9 Section 4, Renmin Nan Road, Chengdu 610041, Sichuan, China
| | - Rongxun Li
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Wenbo Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Zhendong Dai
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Behroozi M, Lorenzi E, Tabrik S, Tegenthoff M, Gozzi A, Güntürkün O, Vallortigara G. Functional MRI of imprinting memory in awake newborn domestic chicks. Commun Biol 2024; 7:1326. [PMID: 39406830 PMCID: PMC11480507 DOI: 10.1038/s42003-024-06991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, invasive techniques like autoradiography or lesions have been used to study it, limiting the exploration of whole brain networks. Recent advances in fMRI for avian brains now open new windows to explore bird's brain functions at the network level. We developed an fMRI technique for awake, newly hatched chicks, capturing BOLD signal changes during imprinting experiments. While early memory acquisition phases are understood, long-term storage and retrieval remain unclear. Our findings identified potential long-term storage of imprinting memories across a neural network, including the hippocampal formation, the medial striatum, the arcopallium, and the prefrontal-like nidopallium caudolaterale. This paradigm opens up new avenues for exploring the broader landscape of learning and memory in neonatal vertebrates, enhancing our understanding of behaviour and brain networks.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany.
| | - Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Rovereto, TN, Italy.
| | - Sepideh Tabrik
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, Bochum, Germany
| | - Alessandro Gozzi
- Functional neuroimaging laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, Bochum, Germany
- Research Center One Health Ruhr, University Research Alliance Ruhr, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Rovereto, TN, Italy
| |
Collapse
|
4
|
Corley C, Craig A, Sadek S, Marusich JA, Chehimi SN, White AM, Holdiness LJ, Reiner BC, Gipson CD. Enhancing translation: A need to leverage complex preclinical models of addictive drugs to accelerate substance use treatment options. Pharmacol Biochem Behav 2024; 243:173836. [PMID: 39067531 PMCID: PMC11344688 DOI: 10.1016/j.pbb.2024.173836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Preclinical models of addictive drugs have been developed for decades to model aspects of the clinical experience in substance use disorders (SUDs). These include passive exposure as well as volitional intake models across addictive drugs and have been utilized to also measure withdrawal symptomatology and potential neurobehavioral mechanisms underlying relapse to drug seeking or taking. There are a number of Food and Drug Administration (FDA)-approved medications for SUDs, however, many demonstrate low clinical efficacy as well as potential sex differences, and we also note gaps in the continuum of care for certain aspects of clinical experiences in individuals who use drugs. In this review, we provide a comprehensive update on both frequently utilized and novel behavioral models of addiction with a focus on translational value to the clinical experience and highlight the need for preclinical research to follow epidemiological trends in drug use patterns to stay abreast of clinical treatment needs. We then note areas in which models could be improved to enhance the medications development pipeline through efforts to enhance translation of preclinical models. Next, we describe neuroscience efforts that can be leveraged to identify novel biological mechanisms to enhance medications development efforts for SUDs, focusing specifically on advances in brain transcriptomics approaches that can provide comprehensive screening and identification of novel targets. Together, the confluence of this review demonstrates the need for careful selection of behavioral models and methodological parameters that better approximate the clinical experience combined with cutting edge neuroscience techniques to advance the medications development pipeline for SUDs.
Collapse
Affiliation(s)
- Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | - Samar N Chehimi
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Lexi J Holdiness
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
5
|
Otto T, Rose J. The open toolbox for behavioral research. Behav Res Methods 2024; 56:4522-4529. [PMID: 37794209 PMCID: PMC11289225 DOI: 10.3758/s13428-023-02199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 10/06/2023]
Abstract
In this work, we describe a new open-source MATLAB toolbox for the control of behavioral experiments. The toolbox caters to very different types of experiments in different species, and with different underlying hardware. Typical examples are operant chambers in animals, with or without neurophysiology, behavioral experiments in human subjects, and neurophysiological recordings in humans such as EEG and fMRI. In addition, the toolbox supports communication via Ethernet to either control and monitor one or several experimental setups remotely or to implement distributed paradigms across different computers. This flexibility is possible, since the toolbox supports a wide range of hardware, some of which is custom developments. An example is a fast network-based digital-IO device for the communication with experimental hardware such as feeders or triggers in neurophysiological setups. We also included functions for online video analysis allowing paradigms to be contingent on responses to a screen, the head movement of a bird in an operant chamber, or the physical location of an animal in an open arena. While the toolbox is well tested and many components of it have been in use for many years, we do not see it as a finished product but rather a continuing development with a focus on easy extendibility and customization.
Collapse
Affiliation(s)
- Tobias Otto
- Cognitive Psychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| | - Jonas Rose
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
6
|
Serir A, Tuff JM, Rook N, Fongaro E, Schreiber T, Peus E, Güntürkün O, Manahan-Vaughan D, Rose J, Pusch R. Balanced anesthesia in pigeons ( Columba livia): a protocol that ensures stable vital parameters and feasibility during long surgeries in cognitive neuroscience. Front Physiol 2024; 15:1437890. [PMID: 39148744 PMCID: PMC11324599 DOI: 10.3389/fphys.2024.1437890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
In neuroscience, numerous experimental procedures in animal models require surgical interventions, such as the implantation of recording electrodes or cannulas before main experiments. These surgeries can take several hours and should rely on principles that are common in the field of research and medicine. Considering the characteristics of the avian respiratory physiology, the development of a safe and replicable protocol for birds is necessary to minimize side effects of anesthetic agents, circumvent technical limitations due to the insufficient availability of patient monitoring, and to maintain stable intraoperative anesthesia. Through the consistent and responsible implementation of the three R principle of animal welfare in science ("Replace, Reduce, Refine"), we aimed to optimize experimental methods to minimize the burden on pigeons (Columba livia) during surgical procedures. Here, surgeries were conducted under balanced anesthesia and perioperative monitoring of heart rate, oxygen saturation, body temperature, and the reflex state. The protocol we developed is based on the combination of injectable and inhalative anesthetic drugs [ketamine, xylazine, and isoflurane, supported by the application of an opiate for analgesia (e.g., butorphanol, buprenorphine)]. The combination of ketamine and xylazine with a pain killer is established in veterinary medicine across a vast variety of species. Practicability was verified by survival of the animals, fast and smooth recovery quantified by clinical examination, sufficiency, and stability of anesthesia. Independent of painful stimuli like incision or drilling, or duration of surgery, vital parameters were within known physiological ranges for pigeons. Our approach provides a safe and conservative protocol for surgeries of extended duration for scientific applications as well as for veterinary medicine in pigeons which can be adapted to other bird species.
Collapse
Affiliation(s)
- A Serir
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Neurophysiology, Institute of Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
- Department of Anesthesiology, Center for Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - J M Tuff
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - N Rook
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - E Fongaro
- Department of Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | | | - E Peus
- Pigeon Clinic Essen, Essen, Germany
| | - O Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - D Manahan-Vaughan
- Department of Neurophysiology, Institute of Physiology, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - J Rose
- Department of Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - R Pusch
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
7
|
Nevue AA, Sairavi A, Huang SJ, Nakai H, Mello CV. Genomic loss of GPR108 disrupts AAV transduction in birds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.589954. [PMID: 38798475 PMCID: PMC11118497 DOI: 10.1101/2024.05.16.589954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The G protein-coupled receptor 108 (GPR108) gene encodes a protein factor identified as critical for adeno-associated virus (AAV) entry into mammalian cells, but whether it is universally involved in AAV transduction is unknown. Remarkably, we have discovered that GPR108 is absent in the genomes of birds and in most other sauropsids, providing a likely explanation for the overall lower AAV transduction efficacy of common AAV serotypes in birds compared to mammals. Importantly, transgenic expression of human GPR108 and manipulation of related glycan binding sites in the viral capsid significantly boost AAV transduction in zebra finch cells. These findings contribute to a more in depth understanding of the mechanisms and evolution of AAV transduction, with potential implications for the design of efficient tools for gene manipulation in experimental animal models, and a range of gene therapy applications in humans.
Collapse
Affiliation(s)
- Alexander A Nevue
- Department of Behavioral Neuroscience, Oregon Health & Science University, Oregon, USA
| | - Anusha Sairavi
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Oregon, USA
| | - Samuel J Huang
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Oregon, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Oregon, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Oregon, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Claudio V Mello
- Department of Behavioral Neuroscience, Oregon Health & Science University, Oregon, USA
| |
Collapse
|
8
|
Behroozi M, Lorenzi E, Tabrik S, Tegenthoff M, Gozzi A, Güntürkün O, Vallortigara G. Functional MRI of imprinting memory: a new avenue for neurobiology of early learning. RESEARCH SQUARE 2024:rs.3.rs-3970041. [PMID: 38496470 PMCID: PMC10942570 DOI: 10.21203/rs.3.rs-3970041/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Filial imprinting, a crucial ethological paradigm, provides insights into the neurobiology of early learning and its long-term impact on behaviour. To date, only invasive techniques, such as autoradiography or lesion, have been employed to understand this behaviour. The primary limitation of these methods lies in their constrained access to the entire brain, impeding the exploration of brain networks crucial at various stages of this paradigm. Recently, advances in functional magnetic resonance imaging (fMRI) in the avian brain have opened new windows to explore bird's brain function at the network level. Here, we developed a ground-breaking non-invasive functional MRI technique for awake, newly hatched chicks that record whole-brain BOLD signal changes throughout imprinting experiments. While the initial phases of memory acquisition imprinting behaviour have been unravelled, the long-term storage and retrieval components of imprinting memories are still unknown. Our findings identified potential long-term storage of imprinting memories across a neural network, including the hippocampal formation, the medial striatum, the arcopallium, and the prefrontal-like nidopallium caudolaterale. This platform opens up new avenues for exploring the broader landscape of learning and memory processes in neonatal vertebrates, contributing to a more comprehensive understanding of the intricate interplay between behaviour and brain networks.
Collapse
Affiliation(s)
- Mehdi Behroozi
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
- These authors contributed equally to this work
| | - Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto (TN), Italy
- These authors contributed equally to this work
| | - Sepideh Tabrik
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Alessandro Gozzi
- Functional neuroimaging laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Onur Güntürkün
- Institute of Cognitive Neuroscience, Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, 38068 Rovereto (TN), Italy
| |
Collapse
|
9
|
Nimpf S, Kaplan HS, Nordmann GC, Cushion T, Keays DA. Long-term, high-resolution in vivo calcium imaging in pigeons. CELL REPORTS METHODS 2024; 4:100711. [PMID: 38382523 PMCID: PMC10921020 DOI: 10.1016/j.crmeth.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 11/05/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
In vivo 2-photon calcium imaging has led to fundamental advances in our understanding of sensory circuits in mammalian species. In contrast, few studies have exploited this methodology in birds, with investigators primarily relying on histological and electrophysiological techniques. Here, we report the development of in vivo 2-photon calcium imaging in awake pigeons. We show that the genetically encoded calcium indicator GCaMP6s, delivered by the adeno-associated virus rAAV2/7, allows high-quality, stable, and long-term imaging of neuronal populations at single-cell and single-dendrite resolution in the pigeon forebrain. We demonstrate the utility of our setup by investigating the processing of colors in the visual Wulst, the avian homolog of the visual cortex. We report that neurons in the Wulst are color selective and display diverse response profiles to light of different wavelengths. This technology provides a powerful tool to decipher the operating principles that underlie sensory encoding in birds.
Collapse
Affiliation(s)
- Simon Nimpf
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany.
| | - Harris S Kaplan
- Harvard University, Department of Molecular and Cellular Biology, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Gregory C Nordmann
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany
| | - Thomas Cushion
- University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, Cambridge CB2 3EG, UK
| | - David A Keays
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilian-University Munich, Planegg-Martinsried, 82152 Munich, Germany; University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, Cambridge CB2 3EG, UK; Research Institute of Molecular Pathology, Vienna Biocenter, Campus-Vienna-Biocenter 1, Vienna 1030, Austria.
| |
Collapse
|
10
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
11
|
Zoabi S, Andreyanov M, Heinrich R, Ron S, Carmi I, Gutfreund Y, Berlin S. A custom-made AAV1 variant (AAV1-T593K) enables efficient transduction of Japanese quail neurons in vitro and in vivo. Commun Biol 2023; 6:337. [PMID: 36977781 PMCID: PMC10050006 DOI: 10.1038/s42003-023-04712-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The widespread use of rodents in neuroscience has prompted the development of optimized viral variants for transduction of brain cells, in vivo. However, many of the viruses developed are less efficient in other model organisms, with birds being among the most resistant to transduction by current viral tools. Resultantly, the use of genetically-encoded tools and methods in avian species is markedly lower than in rodents; likely holding the field back. We sought to bridge this gap by developing custom viruses towards the transduction of brain cells of the Japanese quail. We first develop a protocol for culturing primary neurons and glia from quail embryos, followed by characterization of cultures via immunostaining, single cell mRNA sequencing, patch clamp electrophysiology and calcium imaging. We then leveraged the cultures for the rapid screening of various viruses, only to find that all yielded poor to no infection of cells in vitro. However, few infected neurons were obtained by AAV1 and AAV2. Scrutiny of the sequence of the AAV receptor found in quails led us to rationally design a custom-made AAV variant (AAV1-T593K; AAV1*) that exhibits improved transduction efficiencies in vitro and in vivo (14- and five-fold, respectively). Together, we present unique culturing method, transcriptomic profiles of quail's brain cells and a custom-tailored AAV1 for transduction of quail neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Shaden Zoabi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Michael Andreyanov
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Shaked Ron
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Ido Carmi
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Yoram Gutfreund
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
12
|
Hahn LA, Rose J. Executive Control of Sequence Behavior in Pigeons Involves Two Distinct Brain Regions. eNeuro 2023; 10:ENEURO.0296-22.2023. [PMID: 36849259 PMCID: PMC9997693 DOI: 10.1523/eneuro.0296-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 03/01/2023] Open
Abstract
Executive functions arise from multiple regions of the brain acting in concert. To facilitate such cross-regional computations, the brain is organized into distinct executive networks, like the frontoparietal network. Despite similar cognitive abilities across many domains, little is known about such executive networks in birds. Recent advances in avian fMRI have shown a possible subset of regions, including the nidopallium caudolaterale (NCL) and the lateral part of medial intermediate nidopallium (NIML), that may contribute to complex cognition, forming an action control system of pigeons. We investigated the neuronal activity of NCL and NIML. Single-cell recordings were obtained during the execution of a complex sequential motor task that required executive control to stop executing one behavior and continue with a different one. We compared the neuronal activity of NIML to NCL and found that both regions fully processed the ongoing sequential execution of the task. Differences arose from how behavioral outcome was processed. Our results indicate that NCL takes on a role in evaluating outcome, while NIML is more tightly associated with ongoing sequential steps. Importantly, both regions seem to contribute to overall behavioral output as parts of a possible avian executive network, crucial for behavioral flexibility and decision-making.
Collapse
Affiliation(s)
- Lukas Alexander Hahn
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
13
|
Pusch R, Clark W, Rose J, Güntürkün O. Visual categories and concepts in the avian brain. Anim Cogn 2023; 26:153-173. [PMID: 36352174 PMCID: PMC9877096 DOI: 10.1007/s10071-022-01711-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Birds are excellent model organisms to study perceptual categorization and concept formation. The renewed focus on avian neuroscience has sparked an explosion of new data in the field. At the same time, our understanding of sensory and particularly visual structures in the avian brain has shifted fundamentally. These recent discoveries have revealed how categorization is mediated in the avian brain and has generated a theoretical framework that goes beyond the realm of birds. We review the contribution of avian categorization research-at the methodical, behavioral, and neurobiological levels. To this end, we first introduce avian categorization from a behavioral perspective and the common elements model of categorization. Second, we describe the functional and structural organization of the avian visual system, followed by an overview of recent anatomical discoveries and the new perspective on the avian 'visual cortex'. Third, we focus on the neurocomputational basis of perceptual categorization in the bird's visual system. Fourth, an overview of the avian prefrontal cortex and the prefrontal contribution to perceptual categorization is provided. The fifth section outlines how asymmetries of the visual system contribute to categorization. Finally, we present a mechanistic view of the neural principles of avian visual categorization and its putative extension to concept learning.
Collapse
Affiliation(s)
- Roland Pusch
- Biopsychology, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - William Clark
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
14
|
Skoven CS, Tomasevic L, Kvitsiani D, Pakkenberg B, Dyrby TB, Siebner HR. Dose-response relationship between the variables of unilateral optogenetic stimulation and transcallosal evoked responses in rat motor cortex. Front Neurosci 2022; 16:968839. [PMID: 36213739 PMCID: PMC9539969 DOI: 10.3389/fnins.2022.968839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Efficient interhemispheric integration of neural activity between left and right primary motor cortex (M1) is critical for inter-limb motor control. We employed optogenetic stimulation to establish a framework for probing transcallosal M1–M1 interactions in rats. We performed optogenetic stimulation of excitatory neurons in right M1 of male Sprague-Dawley rats. We recorded the transcallosal evoked potential in contralateral left M1 via chronically implanted electrodes. Recordings were performed under anesthesia combination of dexmedetomidine and a low concentration of isoflurane. We systematically varied the stimulation intensity and duration to characterize the relationship between stimulation parameters in right M1 and the characteristics of the evoked intracortical potentials in left M1. Optogenetic stimulation of right M1 consistently evoked a transcallosal response in left M1 with a consistent negative peak (N1) that sometimes was preceded by a smaller positive peak (P1). Higher stimulation intensity or longer stimulation duration gradually increased N1 amplitude and reduced N1 variability across trials. A combination of stimulation intensities of 5–10 mW with stimulus durations of 1–10 ms were generally sufficient to elicit a robust transcallosal response in most animal, with our optic fiber setup. Optogenetically stimulated excitatory neurons in M1 can reliably evoke a transcallosal response in anesthetized rats. Characterizing the relationship between “stimulation dose” and “response magnitude” (i.e., the gain function) of transcallosal M1-to-M1 excitatory connections can be used to optimize the variables of optogenetic stimulation and ensure stimulation efficacy.
Collapse
Affiliation(s)
- Christian Stald Skoven
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Center for Functional Integrative Neuroscience, Aarhus University (AU), Aarhus, Denmark
- *Correspondence: Christian Stald Skoven,
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Duda Kvitsiani
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience, Aarhus University, Aarhus, Denmark
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Bjørn Dyrby
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Hartwig Roman Siebner,
| |
Collapse
|
15
|
Du W, Hurdiss DL, Drabek D, Mykytyn AZ, Kaiser FK, González-Hernández M, Muñoz-Santos D, Lamers MM, van Haperen R, Li W, Drulyte I, Wang C, Sola I, Armando F, Beythien G, Ciurkiewicz M, Baumgärtner W, Guilfoyle K, Smits T, van der Lee J, van Kuppeveld FJM, van Amerongen G, Haagmans BL, Enjuanes L, Osterhaus ADME, Grosveld F, Bosch BJ. An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. Sci Immunol 2022; 7:eabp9312. [PMID: 35471062 DOI: 10.1101/2022.02.17.480751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ongoing evolution of SARS-CoV-2 has resulted in the emergence of Omicron, which displays notable immune escape potential through mutations at key antigenic sites on the spike protein. Many of these mutations localize to the spike protein ACE2 receptor binding domain, annulling the neutralizing activity of therapeutic antibodies that were effective against other variants of concern (VOCs) earlier in the pandemic. Here, we identified a receptor-blocking human monoclonal antibody, 87G7, that retained potent in vitro neutralizing activity against SARS-CoV-2 variants including the Alpha, Beta, Gamma, Delta, and Omicron (BA.1/BA.2) VOCs. Using cryo-electron microscopy and site-directed mutagenesis experiments, we showed that 87G7 targets a patch of hydrophobic residues in the ACE2-binding site that are highly conserved in SARS-CoV-2 variants, explaining its broad neutralization capacity. 87G7 protected mice and hamsters prophylactically against challenge with all current SARS-CoV-2 VOCs and showed therapeutic activity against SARS-CoV-2 challenge in both animal models. Our findings demonstrate that 87G7 holds promise as a prophylactic or therapeutic agent for COVID-19 that is more resilient to SARS-CoV-2 antigenic diversity.
Collapse
Affiliation(s)
- Wenjuan Du
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Daniel L Hurdiss
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
- Harbour BioMed, Rotterdam, Netherlands
| | - Anna Z Mykytyn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Franziska K Kaiser
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Mariana González-Hernández
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Diego Muñoz-Santos
- Department of Molecular and Cell Biology, National Center for Biotechnology-Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Mart M Lamers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Rien van Haperen
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
- Harbour BioMed, Rotterdam, Netherlands
| | - Wentao Li
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Ieva Drulyte
- Thermo Fisher Scientific, Materials and Structural Analysis, Eindhoven, Netherlands
| | - Chunyan Wang
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Isabel Sola
- Department of Molecular and Cell Biology, National Center for Biotechnology-Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Tony Smits
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Joline van der Lee
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Frank J M van Kuppeveld
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center for Biotechnology-Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Global Virus Network, Center of Excellence, Baltimore, MD, USA
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
- Harbour BioMed, Rotterdam, Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Dickinson MS, Lu J, Gupta M, Marten I, Hedrich R, Stroud RM. Molecular basis of multistep voltage activation in plant two-pore channel 1. Proc Natl Acad Sci U S A 2022; 119:e2110936119. [PMID: 35210362 PMCID: PMC8892357 DOI: 10.1073/pnas.2110936119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Voltage-gated ion channels confer excitability to biological membranes, initiating and propagating electrical signals across large distances on short timescales. Membrane excitation requires channels that respond to changes in electric field and couple the transmembrane voltage to gating of a central pore. To address the mechanism of this process in a voltage-gated ion channel, we determined structures of the plant two-pore channel 1 at different stages along its activation coordinate. These high-resolution structures of activation intermediates, when compared with the resting-state structure, portray a mechanism in which the voltage-sensing domain undergoes dilation and in-membrane plane rotation about the gating charge-bearing helix, followed by charge translocation across the charge transfer seal. These structures, in concert with patch-clamp electrophysiology, show that residues in the pore mouth sense inhibitory Ca2+ and are allosterically coupled to the voltage sensor. These conformational changes provide insight into the mechanism of voltage-sensor domain activation in which activation occurs vectorially over a series of elementary steps.
Collapse
Affiliation(s)
- Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
- Chemistry and Chemical Biology Graduate Program, University of California, San Francisco, CA 94143
| | - Jinping Lu
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143
| | - Irene Marten
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Rainer Hedrich
- Department of Molecular Plant Physiology and Biophysics, University of Würzburg, D-97082 Würzburg, Germany
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143;
| |
Collapse
|
17
|
Lehtinen K, Nokia MS, Takala H. Red Light Optogenetics in Neuroscience. Front Cell Neurosci 2022; 15:778900. [PMID: 35046775 PMCID: PMC8761848 DOI: 10.3389/fncel.2021.778900] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic tools are operated with blue, green, or yellow light, which all have limited penetration in biological tissues compared to red light and especially infrared light. This difference is significant, especially considering the size of the rodent brain, a major research model in neuroscience. Our review will focus on the utilization of red light-operated optogenetic tools in neuroscience. We first outline the advantages of red light for in vivo studies. Then we provide a brief overview of the red light-activated optogenetic proteins and systems with a focus on new developments in the field. Finally, we will highlight different tools and applications, which further facilitate the use of red light optogenetics in neuroscience.
Collapse
Affiliation(s)
- Kimmo Lehtinen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam S. Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
18
|
A hierarchical processing unit for multi-component behavior in the avian brain. iScience 2021; 24:103195. [PMID: 34703993 PMCID: PMC8524150 DOI: 10.1016/j.isci.2021.103195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Multi-component behavior is a form of goal-directed behavior that depends on the ability to execute various responses in a precise temporal order. Even though this function is vital for any species, little is known about how non-mammalian species accomplish such behavior and what the underlying neural mechanisms are. We show that humans and a non-mammalian species (pigeons) perform equally well in multi-component behavior and provide a validated experimental approach useful for cross-species comparisons. Applying molecular imaging methods, we identified brain regions most important for the examined behavioral dynamics in pigeons. Especially activity in the nidopallium intermedium medialis pars laterale (NIML) was specific to multi-component behavior since only activity in NIML was predictive for behavioral efficiency. The data suggest that NIML is important for hierarchical processing during goal-directed behavior and shares functional characteristics with the human inferior frontal gyrus in multi-component behavior. Pigeons and humans perform equally well in the STOP-CHANGE paradigm We identified relevant brain regions for the examined behavioral dynamics in pigeons ZENK expression in NIML was predictive for behavioral efficiency This study provides a validated experimental approach for cross-species comparisons
Collapse
|
19
|
Güntürkün O, von Eugen K, Packheiser J, Pusch R. Avian pallial circuits and cognition: A comparison to mammals. Curr Opin Neurobiol 2021; 71:29-36. [PMID: 34562800 DOI: 10.1016/j.conb.2021.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/27/2022]
Abstract
Cognitive functions are similar in birds and mammals. So, are therefore pallial cellular circuits and neuronal computations also alike? In search of answers, we move in from bird's pallial connectomes, to cortex-like sensory canonical circuits and connections, to forebrain micro-circuitries and finally to the avian "prefrontal" area. This voyage from macro- to micro-scale networks and areas reveals that both birds and mammals evolved similar neural and computational properties in either convergent or parallel manner, based upon circuitries inherited from common ancestry. Thus, these two vertebrate classes evolved separately within 315 million years with highly similar pallial architectures that produce comparable cognitive functions.
Collapse
Affiliation(s)
- Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Kaya von Eugen
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julian Packheiser
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Roland Pusch
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
20
|
Spool JA, Macedo-Lima M, Scarpa G, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Genetically identified neurons in avian auditory pallium mirror core principles of their mammalian counterparts. Curr Biol 2021; 31:2831-2843.e6. [PMID: 33989528 DOI: 10.1016/j.cub.2021.04.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Matheus Macedo-Lima
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
| | - Garrett Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|