1
|
Kurashiki R, Takahashi M, Okumura Y, Ono T, Endo H, Makino K, Fukui K, Yokoyama K, Ishikawa S, Yoshida KI, Ohshiro T, Suzuki H. Efficient pathway-driven scyllo-inositol production from myo-inositol using thermophilic cells and mesophilic inositol dehydrogenases: a novel strategy for pathway control. Appl Environ Microbiol 2024; 90:e0028124. [PMID: 38975762 PMCID: PMC11267878 DOI: 10.1128/aem.00281-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Mesophilic enzymes, which are active at moderate temperatures, may dominate enzymatic reactions even in the presence of thermophilic crude enzymes. This study was conducted to investigate this hypothesis with mesophilic inositol dehydrogenases (IolG and IolX) produced in Geobacillus kaustophilus HTA426. To ensure the efficient production of mesophilic enzymes, we first screened for promoters induced at moderate temperatures using transcriptome analysis and identified four genes highly expressed at 30°C in the thermophile. We further characterized these promoters using fluorescent reporter assays to determine that the mti3 promoter could direct efficient gene expression at 40°C. We cloned the promoter into an Escherichia coli-Geobacillus shuttle plasmid and confirmed that the resulting vector functioned in G. kaustophilus and other thermophiles. We then used this vector for the cooperative expression of the iolG and iolX genes from Bacillus subtilis 168. G. kaustophilus cells carrying the expression vector were incubated at 60°C for cellular propagation and then at 40°C for the production of IolG and IolX. When the cells were permeabilized, IolG and IolX acted as catalysts to convert exogenous myo-inositol into scyllo-inositol at 30°C. In a scaled-up reaction, 10 g of myo-inositol was converted to 1.8 g of scyllo-inositol, which was further purified to yield 970 mg of pure powder. Notably, myo-inositol was degraded by intrinsic enzymes of G. kaustophilus at 60°C but not at 30°C, supporting our initial hypothesis. We indicate that this approach is useful for preparing enzyme cocktails without the need for purification. IMPORTANCE Enzyme cocktails are commonly employed for cell-free chemical synthesis; however, their preparation involves cumbersome processes. This study affirms that mesophilic enzymes in thermophilic crude extracts can function as specific catalysts at moderate temperatures, akin to enzyme cocktails. The catalyst was prepared by permeabilizing cells without the need for concentration, extraction, or purification processes; hence, its preparation was considerably simpler compared with conventional methods for enzyme cocktails. This approach was employed to produce pure scyllo-inositol from an economical substrate. Notably, this marks the first large-scale preparation of pure scyllo-inositol, holding potential pharmaceutical significance as scyllo-inositol serves as a promising agent for certain diseases but is currently expensive. Moreover, this approach holds promise for application in pathway engineering within living cells. The envisioned pathway is designed without chromosomal modification and is simply regulated by switching culture temperatures. Consequently, this study introduces a novel platform for both whole-cell and cell-free synthetic systems.
Collapse
Affiliation(s)
- Ryota Kurashiki
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | | | - Yuta Okumura
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Tatsuya Ono
- Department of Engineering, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Hirofumi Endo
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan
| | - Kohei Makino
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kaho Fukui
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Kyosuke Yokoyama
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Shu Ishikawa
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Ken-ichi Yoshida
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan
| | - Takashi Ohshiro
- Faculty of Engineering, Tottori University, Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| | - Hirokazu Suzuki
- Faculty of Engineering, Tottori University, Tottori, Japan
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori, Japan
| |
Collapse
|
2
|
Yoshida KI, Bott M. Microbial synthesis of health-promoting inositols. Curr Opin Biotechnol 2024; 87:103114. [PMID: 38520822 DOI: 10.1016/j.copbio.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/25/2024]
Abstract
D-chiro-inositol and scyllo-inositol are known for their health-promoting properties and promising as ingredients for functional foods. Strains of Bacillus subtilis and Corynebacterium glutamicum were created by metabolic engineering capable of inexpensive production of these two rare inositols from myo-inositol, which is the most common inositol in nature. In addition, further modifications have enabled the synthesis of the two rare inositols from the much-cheaper carbon sources, glucose or sucrose.
Collapse
Affiliation(s)
- Ken-Ichi Yoshida
- Graduate School of Science, Technology and Innovation, University of Kobe, Kobe, Japan.
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
3
|
Liu Y, Cheng H, Li H, Zhang Y, Wang M. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis. Appl Environ Microbiol 2023; 89:e0023023. [PMID: 37272803 PMCID: PMC10305015 DOI: 10.1128/aem.00230-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Bacillus subtilis has been widely used and generally recognized as a safe host for the production of recombinant proteins, high-value chemicals, and pharmaceuticals. Thus, its metabolic engineering attracts significant attention. Nevertheless, the limited availability of selective markers makes this process difficult and time-consuming, especially in the case of multistep biosynthetic pathways. Here, we employ CRISPR/Cas9 technology to build an easy cloning toolkit that addresses commonly encountered obstacles in the metabolic engineering of B. subtilis, including the chromosomal integration locus, promoter, terminator, and guide RNA (gRNA) target. Six promoters were characterized, and the promoter strengths ranged from 0.9- to 23-fold that of the commonly used strong promoter P43. We characterized seven terminators in B. subtilis, and the termination efficiencies (TEs) of the seven terminators are all more than 90%. Six gRNA targets were designed upstream of the promoter and downstream of the terminator. Using a green fluorescent protein (GFP) reporter, we confirmed integration efficiency with the single-locus integration site is up to 100%. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important product, lycopene. By heterologous expression of the essential genes for lycopene synthesis on the B. subtilis genome, a total of 13 key genes involved in the lycopene biosynthetic pathway were manipulated. Moreover, our findings showed that the gene cluster ispG-idi-dxs-ispD could positively affect the production of lycopene, while the cluster dxr-ispE-ispF-ispH had a negative effect on lycopene production. Hence, our multilocus integration strategy can facilitate the pathway assembly for production of complex chemicals and pharmaceuticals in B. subtilis. IMPORTANCE We present a toolkit that allows for rapid cloning procedures and one-step subcloning to move from plasmid-based expression to stable chromosome integration and expression in a production strain in less than a week. The utility of the customized tool was demonstrated by integrating the MEP (2C-methyl-d-erythritol-4-phosphate) pathway, part of the pentose phosphate pathway (PPP), and the hetero-lycopene biosynthesis genes by stable expression in the genome. The tool could be useful to engineer B. subtilis strains through diverse recombination events and ultimately improve its potential and scope of industrial application as biological chassis.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haijiao Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haoni Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yingzhe Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
4
|
Derkaczew M, Martyniuk P, Osowski A, Wojtkiewicz J. Cyclitols: From Basic Understanding to Their Association with Neurodegeneration. Nutrients 2023; 15:2029. [PMID: 37432155 DOI: 10.3390/nu15092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
One of the most common cyclitols found in eukaryotic cells-Myo-inositol (MI) and its derivatives play a key role in many cellular processes such as ion channel physiology, signal transduction, phosphate storage, cell wall formation, membrane biogenesis and osmoregulation. The aim of this paper is to characterize the possibility of neurodegenerative disorders treatment using MI and the research of other therapeutic methods linked to MI's derivatives. Based on the reviewed literature the researchers focus on the most common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Spinocerebellar ataxias, but there are also works describing other seldom encountered diseases. The use of MI, d-pinitol and other methods altering MI's metabolism, although research on this topic has been conducted for years, still needs much closer examination. The dietary supplementation of MI shows a promising effect on the treatment of neurodegenerative disorders and can be of great help in alleviating the accompanying depressive symptoms.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
5
|
Li P, Lämmerhofer M. Generation of 13C-Labeled Inositol and Inositol Phosphates by Stable Isotope Labeling Cell Culture for Quantitative Metabolomics. Anal Chem 2022; 94:15332-15340. [DOI: 10.1021/acs.analchem.2c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Li
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, 72076Tübingen, Germany
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, 72076Tübingen, Germany
| |
Collapse
|
6
|
Physiological, Biochemical, and Structural Bioinformatic Analysis of the Multiple Inositol Dehydrogenases from Corynebacterium glutamicum. Microbiol Spectr 2022; 10:e0195022. [PMID: 36094194 PMCID: PMC9603128 DOI: 10.1128/spectrum.01950-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inositols (cyclohexanehexols) comprise nine isomeric cyclic sugar alcohols, several of which occur in all domains of life with various functions. Many bacteria can utilize inositols as carbon and energy sources via a specific pathway involving inositol dehydrogenases (IDHs) as the first step of catabolism. The microbial cell factory Corynebacterium glutamicum can grow with myo-inositol as a sole carbon source. Interestingly, this species encodes seven potential IDHs, raising the question of the reason for this multiplicity. We therefore investigated the seven IDHs to determine their function, activity, and selectivity toward the biologically most important isomers myo-, scyllo-, and d-chiro-inositol. We created an ΔIDH strain lacking all seven IDH genes, which could not grow on the three inositols. scyllo- and d-chiro-inositol were identified as novel growth substrates of C. glutamicum. Complementation experiments showed that only four of the seven IDHs (IolG, OxiB, OxiD, and OxiE) enabled growth of the ΔIDH strain on two of the three inositols. The kinetics of the four purified enzymes agreed with the complementation results. IolG and OxiD are NAD+-dependent IDHs accepting myo- and d-chiro-inositol but not scyllo-inositol. OxiB is an NAD+-dependent myo-IDH with a weak activity also for scyllo-inositol but not for d-chiro-inositol. OxiE on the other hand is an NAD+-dependent scyllo-IDH showing also good activity for myo-inositol and a very weak activity for d-chiro-inositol. Structural models, molecular docking experiments, and sequence alignments enabled the identification of the substrate binding sites of the active IDHs and of residues allowing predictions on the substrate specificity. IMPORTANCE myo-, scyllo-, and d-chiro-inositol are C6 cyclic sugar alcohols with various biological functions, which also serve as carbon sources for microbes. Inositol catabolism starts with an oxidation to keto-inositols catalyzed by inositol dehydrogenases (IDHs). The soil bacterium C. glutamicum encodes seven potential IDHs. Using a combination of microbiological, biochemical, and modeling approaches, we analyzed the function of these enzymes and identified four IDHs involved in the catabolism of inositols. They possess distinct substrate preferences for the three isomers, and modeling and sequence alignments allowed the identification of residues important for substrate specificity. Our results expand the knowledge of bacterial inositol metabolism and provide an important basis for the rational development of producer strains for these valuable inositols, which show pharmacological activities against, e.g., Alzheimer's disease, polycystic ovarian syndrome, or type II diabetes.
Collapse
|
7
|
Carder HM, Wang Y, Wendlandt AE. Selective Axial-to-Equatorial Epimerization of Carbohydrates. J Am Chem Soc 2022; 144:11870-11877. [PMID: 35731921 DOI: 10.1021/jacs.2c04743] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Radical-mediated transformations have emerged as powerful methods for the synthesis of rare and unnatural branched, deoxygenated, and isomeric sugars. Here, we describe a radical-mediated axial-to-equatorial alcohol epimerization method to transform abundant glycans into rare isomers. The method delivers highly predictable and selective reaction outcomes that are complementary to other sugar isomerization methods. The synthetic utility of isomer interconversion is showcased through expedient glycan synthesis, including one-step glycodiversification. Mechanistic studies reveal that both site- and diastereoselectivities are achieved by highly selective H atom abstraction of equatorially disposed α-hydroxy C-H bonds.
Collapse
Affiliation(s)
- Hayden M Carder
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yong Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alison E Wendlandt
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Compositional Analysis of Four Kinds of Citrus Fruits with an NMR-Based Method for Understanding Nutritional Value and Rational Utilization: From Pericarp to Juice. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082579. [PMID: 35458777 PMCID: PMC9031779 DOI: 10.3390/molecules27082579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Citrus is one of the most important economic crops and is widely distributed across the monsoon region. Citrus fruits are deeply loved by consumers because of their special color, fragrance and high nutritional value. However, their health benefits have not been fully understood, especially the pericarps of citrus fruits which have barely been utilized due to their unknown chemical composition. In the present study, the pericarp and juices of four typical varieties of citrus fruits (lemon, dekopon, sweet orange and pomelo) were analyzed by NMR spectroscopy combined with pattern recognition. A total of 62 components from the citrus juices and 87 components from the citrus pericarps were identified and quantified, respectively. The different varieties of the citrus fruits could be distinguished from the others, and the chemical markers in each citrus juice and pericarp were identified by a combination of univariate and multivariate statistical analyses. The nutritional analysis of citrus juices offers favorable diet recommendations for human consumption and data guidance for their potential medical use, and the nutritional analysis of citrus pericarps provides a data reference for the subsequent comprehensive utilization of citrus fruits. Our results not only provide an important reference for the potential nutritional and medical values of citrus fruits but also provide a feasible platform for the traceability analysis, adulteration identification and chemical composition analysis of other fruits.
Collapse
|
9
|
Ramp P, Lehnert A, Matamouros S, Wirtz A, Baumgart M, Bott M. Metabolic engineering of Corynebacterium glutamicum for production of scyllo-inositol, a drug candidate against Alzheimer's disease. Metab Eng 2021; 67:173-185. [PMID: 34224896 DOI: 10.1016/j.ymben.2021.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 10/20/2022]
Abstract
Scyllo-inositol has been identified as a potential drug for the treatment of Alzheimer's disease. Therefore, cost-efficient processes for the production of this compound are desirable. In this study, we analyzed and engineered Corynebacterium glutamicum with the aim to develop competitive scyllo-inositol producer strains. Initial studies revealed that C. glutamicum naturally produces scyllo-inositol when cultured with myo-inositol as carbon source. The conversion involves NAD+-dependent oxidation of myo-inositol to 2-keto-myo-inositol followed by NADPH-dependent reduction to scyllo-inositol. Use of myo-inositol for biomass formation was prevented by deletion of a cluster of 16 genes involved in myo-inositol catabolism (strain MB001(DE3)Δiol1). Deletion of a second cluster of four genes (oxiC-cg3390-oxiD-oxiE) related to inositol metabolism prevented conversion of 2-keto-myo-inositol to undesired products causing brown coloration (strain MB001(DE3)Δiol1Δiol2). The two chassis strains were used for plasmid-based overproduction of myo-inositol dehydrogenase (IolG) and scyllo-inositol dehydrogenase (IolW). In BHI medium containing glucose and myo-inositol, a complete conversion of the consumed myo-inositol into scyllo-inositol was achieved with the Δiol1Δiol2 strain. To enable scyllo-inositol production from cheap carbon sources, myo-inositol 1-phosphate synthase (Ino1) and myo-inositol 1-phosphatase (ImpA), which convert glucose 6-phosphate into myo-inositol, were overproduced in addition to IolG and IolW using plasmid pSI. Strain MB001(DE3)Δiol1Δiol2 (pSI) produced 1.8 g/L scyllo-inositol from 20 g/L glucose and even 4.4 g/L scyllo-inositol from 20 g/L sucrose within 72 h. Our results demonstrate that C. glutamicum is an attractive host for the biotechnological production of scyllo-inositol and potentially further myo-inositol-derived products.
Collapse
Affiliation(s)
- Paul Ramp
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Alexander Lehnert
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Susana Matamouros
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Astrid Wirtz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Meike Baumgart
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
10
|
Engineering Bacillus subtilis Cells as Factories: Enzyme Secretion and Value-added Chemical Production. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0104-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Wang X, Chen L, Liu J, Sun T, Zhang W. Light-Driven Biosynthesis of myo-Inositol Directly From CO 2 in Synechocystis sp. PCC 6803. Front Microbiol 2020; 11:566117. [PMID: 33117313 PMCID: PMC7550737 DOI: 10.3389/fmicb.2020.566117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
myo-inositol (MI) is an essential growth factor, nutritional source, and important precursor for many derivatives like D-chiro-inositol. In this study, attempts were made to achieve the “green biosynthesis” of MI in a model photosynthetic cyanobacterium Synechocystis sp. PCC 6803. First, several genes encoding myo-inositol-1-phosphate synthases and myo-inositol-1-monophosphatase, catalyzing the first or the second step of MI synthesis, were introduced, respectively, into Synechocystis. The results showed that the engineered strain carrying myo-inositol-1-phosphate synthase gene from Saccharomyces cerevisiae was able to produce MI at 0.97 mg L–1. Second, the combined overexpression of genes related to the two catalyzing processes increased the production up to 1.42 mg L–1. Third, to re-direct more cellular carbon flux into MI synthesis, an inducible small RNA regulatory tool, based on MicC-Hfq, was utilized to control the competing pathways of MI biosynthesis, resulting in MI production of ∼7.93 mg L–1. Finally, by optimizing the cultivation condition via supplying bicarbonate to enhance carbon fixation, a final MI production up to 12.72 mg L–1 was achieved, representing a ∼12-fold increase compared with the initial MI-producing strain. This study provides a light-driven green synthetic strategy for MI directly from CO2 in cyanobacterial chassis and represents a renewable alternative that may deserve further optimization in the future.
Collapse
Affiliation(s)
- Xiaoshuai Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| | - Jing Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|