1
|
Zhao Z, Wang X, Han R, Zhao Y, Liu S, Zhuang J, Wang Y, Chen X, Liu B, Li X. Camellia sinensis WIP domain protein 3 (CsWIP3), a C2H2 zinc finger protein, mediates lignin content and regulates plant growth in tea plants. Int J Biol Macromol 2025; 307:142078. [PMID: 40107543 DOI: 10.1016/j.ijbiomac.2025.142078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
The WIP proteins are essential for plant development, but their functions in tea plants (Camellia sinensis) remain poorly understood. In this study, six WIP members were identified in the tea plants and conducted a systematic analysis of their structure characteristics, expression patterns, promoter cis-acting elements, and functional roles. Sequence alignment and phylogenetic analysis revealed that the CsWIP family contains members with characteristic C2H2 zinc finger domains. Expression analysis across different tissues revealed a constitutive expression pattern. Promoter cis-acting element analysis identified several key regulatory elements associated with growth, development, and stress responses, highlighting the potential regulatory roles of CsWIP genes. Subcellular localization studies showed that CsWIP proteins primarily localize in the nucleus. Overexpression of CsWIP3 in Arabidopsis thaliana led to stunted growth, reduced leaf size, and increased lignin content, indicating its role in plant growth and lignification, with its function also validated in Solanum lycopersicum. Additionally, yeast two-hybrid assays identified interactions between CsWIP3 and CsTTG, CsAim32, and CsDUF1005, all of which are involved in regulating plant development, flower formation, and lignin biosynthesis. This study provides new insights into the functions of the CsWIP gene family in tea plants, revealing their functional diversity and potential applications in enhancing growth and development in tea plants.
Collapse
Affiliation(s)
- Zhen Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Province, PR China
| | - Xiaoxuan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Province, PR China
| | - Rui Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Province, PR China
| | - Yuxin Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Province, PR China
| | - Shujing Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Province, PR China
| | - Jing Zhuang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Province, PR China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Province, PR China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Province, PR China
| | - Benying Liu
- Yunnan Provincial Key Laboratory of Tea Science, Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, PR China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Province, PR China.
| |
Collapse
|
2
|
Liu T, Sharif R, Shi Z, Guo K, Zhang Z, Bao X, Ali A. Transcriptomic analysis reveals the crucial role of YABBY genes family in hormonal induced parthenocarpy in Cucumis sativus L. BMC PLANT BIOLOGY 2025; 25:45. [PMID: 39794697 PMCID: PMC11724556 DOI: 10.1186/s12870-024-06018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND The plant-specific YABBY transcription factor family plays several activities, including responding to abiotic stress, establishing dorsoventral polarity, and developing lateral organs. Cucumis sativus L. commonly referred to as cucumber and one of the first vegetable crops with a fully sequenced genome. RESULTS In this work, we examined the application of NAA, CPPU, and GA4 + 7 to inflict parthenocarpy in the cucumber ZK line. The expression pattern of YABBY genes throughout fruit development and performed a genomic census of cucumber (Cucumis sativus L.). Based on peptide classification, we discovered eight CsYABBY genes and divided them into five subfamilies. Similarities in motif composition and exon-intron structure were also observed. The cis-elements and gene ontology (GO) analysis revealed the involvement of CsYABBY genes in vegetative growth and the transition of vegetative to the reproductive phase. The expression analysis revealed the differential expression response to NAA, CPPU, and GA4 + 7. In particular, the CsYABBY1 was induced sharply by NAA and CPPU but not GA4 + 7. The transient expression of CsCRC disclosed that it is localized in the nucleus. CONCLUSION These findings point to the possibility that CsYABBY1 and CsCRC may positively affect fruit development and could be utilized to generate parthenocarpic cucumber fruits.
Collapse
Affiliation(s)
- Tingting Liu
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China.
- Department of Science and Technology, Shanxi Datong University, Datong, Shanxi, 037009, China.
| | - Rahat Sharif
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Zetao Shi
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Kehong Guo
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Zhisen Zhang
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Xueping Bao
- Engineering Research Center of Coal-Based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, Shanxi, 037009, China
| | - Ahmad Ali
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Sugarcane Research Center, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Ministry of Agriculture, Haikou, Hainan, 571101, China.
| |
Collapse
|
3
|
Moya-Cuevas J, Ortiz-Gutiérrez E, López-Sánchez P, Simón-Moya M, Ballester P, Álvarez-Buylla ER, Ferrándiz C. A Model for the Gene Regulatory Network Along the Arabidopsis Fruit Medio-Lateral Axis: Rewiring the Pod Shatter Process. PLANTS (BASEL, SWITZERLAND) 2024; 13:2927. [PMID: 39458874 PMCID: PMC11511003 DOI: 10.3390/plants13202927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Different convergent evolutionary strategies adopted by angiosperm fruits lead to diverse functional seed dispersal units. Dry dehiscent fruits are a common type of fruit, characterized by their lack of fleshy pericarp and the release of seeds at maturity through openings (dehiscence zones, DZs) in their structure. In previous decades, a set of core players in DZ formation have been intensively characterized in Arabidopsis and integrated in a gene regulatory network (GRN) that explains the morphogenesis of these tissues. In this work, we compile all the experimental data available to date to build a discrete Boolean model as a mechanistic approach to validate the network and, if needed, to identify missing components of the GRN and/or propose new hypothetical regulatory interactions, but also to provide a new formal framework to feed further work in Brassicaceae fruit development and the evolution of seed dispersal mechanisms. Hence, by means of exhaustive in-silico validations and experimental evidence, we are able to incorporate both the NO TRANSMITTING TRACT (NTT) transcription factor as a new additional node, and a new set of regulatory hypothetical rules to uncover the dynamics of Arabidopsis DZ specification.
Collapse
Affiliation(s)
- José Moya-Cuevas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 Valencia, Spain; (J.M.-C.); (M.S.-M.); (P.B.)
- Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus de Teatinos, 29071 Málaga, Spain
| | - Elizabeth Ortiz-Gutiérrez
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico; (E.O.-G.); (P.L.-S.)
| | - Patricio López-Sánchez
- Departamento de Ciencias Naturales, Unidad Cuajimalpa, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico; (E.O.-G.); (P.L.-S.)
| | - Miguel Simón-Moya
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 Valencia, Spain; (J.M.-C.); (M.S.-M.); (P.B.)
| | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 Valencia, Spain; (J.M.-C.); (M.S.-M.); (P.B.)
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas–Universidad Politécnica de Valencia, 46022 Valencia, Spain; (J.M.-C.); (M.S.-M.); (P.B.)
| |
Collapse
|
4
|
Vlad D, Zaidem M, Perico C, Sedelnikova O, Bhattacharya S, Langdale JA. The WIP6 transcription factor TOO MANY LATERALS specifies vein type in C 4 and C 3 grass leaves. Curr Biol 2024; 34:1670-1686.e10. [PMID: 38531358 DOI: 10.1016/j.cub.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/04/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024]
Abstract
Grass leaves are invariantly strap shaped with an elongated distal blade and a proximal sheath that wraps around the stem. Underpinning this shape is a scaffold of leaf veins, most of which extend in parallel along the proximo-distal leaf axis. Differences between species are apparent both in the vein types that develop and in the distance between veins across the medio-lateral leaf axis. A prominent engineering goal is to increase vein density in leaves of C3 photosynthesizing species to facilitate the introduction of the more efficient C4 pathway. Here, we discover that the WIP6 transcription factor TOO MANY LATERALS (TML) specifies vein rank in both maize (C4) and rice (C3). Loss-of-function tml mutations cause large lateral veins to develop in positions normally occupied by smaller intermediate veins, and TML transcript localization in wild-type leaves is consistent with a role in suppressing lateral vein development in procambial cells that form intermediate veins. Attempts to manipulate TML function in rice were unsuccessful because transgene expression was silenced, suggesting that precise TML expression is essential for shoot viability. This finding may reflect the need to prevent the inappropriate activation of downstream targets or, given that transcriptome analysis revealed altered cytokinin and auxin signaling profiles in maize tml mutants, the need to prevent local or general hormonal imbalances. Importantly, rice tml mutants display an increased occupancy of veins in the leaf, providing a step toward an anatomical chassis for C4 engineering. Collectively, a conserved mechanism of vein rank specification in grass leaves has been revealed.
Collapse
Affiliation(s)
- Daniela Vlad
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Maricris Zaidem
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Chiara Perico
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Olga Sedelnikova
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK
| | - Samik Bhattacharya
- Resolve BioSciences GmbH, Alfred-Nobel-Straße 10, 40789 Monheim am Rhein, Germany
| | - Jane A Langdale
- Department of Biology, University of Oxford, South Parks Rd, Oxford OX1 3RB, UK.
| |
Collapse
|
5
|
Segura M, García A, Gamarra G, Benítez Á, Iglesias-Moya J, Martínez C, Jamilena M. An miR164-resistant mutation in the transcription factor gene CpCUC2B enhances carpel arrest and ectopic boundary specification in Cucurbita pepo flower development. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1948-1966. [PMID: 38066672 PMCID: PMC10967242 DOI: 10.1093/jxb/erad486] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/08/2023] [Indexed: 03/28/2024]
Abstract
The sex determination process in cucurbits involves the control of stamen or carpel development during the specification of male or female flowers from a bisexual floral meristem, a function coordinated by ethylene. A gain-of-function mutation in the miR164-binding site of CpCUC2B, ortholog of the Arabidopsis transcription factor gene CUC2, not only produced ectopic floral meristems and organs, but also suppressed the development of carpels and promoted the development of stamens. The cuc2b mutation induced the transcription of CpCUC2B in the apical shoots of plants after female flowering but repressed other CUC genes regulated by miR164, suggesting a conserved functional redundancy of these genes in the development of squash flowers. The synergistic androecious phenotype of the double mutant between cuc2b and etr2b, an ethylene-insensitive mutation that enhances the production of male flowers, demonstrated that CpCUC2B arrests the development of carpels independently of ethylene and CpWIP1B. The transcriptional regulation of CpCUC1, CpCUC2, and ethylene genes in cuc2b and ethylene mutants also confirms this conclusion. However, the epistasis of cuc2b over aco1a, a mutation that suppresses stamen arrest in female flowers, and the down-regulation of CpACS27A in cuc2b female apical shoots, indicated that CpCUC2B promotes stamen development by suppressing the late ethylene production.
Collapse
Affiliation(s)
- María Segura
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Alicia García
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Germán Gamarra
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Álvaro Benítez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Jessica Iglesias-Moya
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Cecilia Martínez
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology. Agri-food Campus of International Excellence (CeiA3) and Research Center CIAIMBITAL, University of Almería, 04120 Almería, Spain
| |
Collapse
|
6
|
Duan SF, Zhao Y, Yu JC, Xiang GS, Xiao L, Cui R, Hu QQ, Baldwin TC, Lu YC, Liang YL. Genome-wide identification and expression analysis of the C2H2-zinc finger transcription factor gene family and screening of candidate genes involved in floral development in Coptis teeta Wall. (Ranunculaceae). Front Genet 2024; 15:1349673. [PMID: 38317660 PMCID: PMC10839097 DOI: 10.3389/fgene.2024.1349673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background: C2H2-zinc finger transcription factors comprise one of the largest and most diverse gene superfamilies and are involved in the transcriptional regulation of flowering. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in a number of model plant species, little is known about their expression and function in Coptis teeta. C. teeta displays two floral phenotypes (herkogamy phenotypes). It has been proposed that the C2H2-zinc finger transcription factor family may play a crucial role in the formation of floral development and herkogamy observed in C. teeta. As such, we performed a genome-wide analysis of the C2H2-ZFP gene family in C. teeta. Results: The complexity and diversity of C. teeta C2H2 zinc finger proteins were established by evaluation of their physicochemical properties, phylogenetic relationships, exon-intron structure, and conserved motifs. Chromosome localization showed that 95 members of the C2H2 zinc-finger genes were unevenly distributed across the nine chromosomes of C. teeta, and that these genes were replicated in tandem and segmentally and had undergone purifying selection. Analysis of cis-acting regulatory elements revealed a possible involvement of C2H2 zinc-finger proteins in the regulation of phytohormones. Transcriptome data was then used to compare the expression levels of these genes during the growth and development of the two floral phenotypes (F-type and M-type). These data demonstrate that in groups A and B, the expression levels of 23 genes were higher in F-type flowers, while 15 genes showed higher expressions in M-type flowers. qRT-PCR analysis further revealed that the relative expression was highly consistent with the transcriptome data. Conclusion: These data provide a solid basis for further in-depth studies of the C2H2 zinc finger transcription factor gene family in this species and provide preliminary information on which to base further research into the role of the C2H2 ZFPs gene family in floral development in C. teeta.
Collapse
Affiliation(s)
- Shao-Feng Duan
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan Zhao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Ji-Chen Yu
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Gui-Sheng Xiang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lin Xiao
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rui Cui
- Yunnan Land and Resources Vocational College, Kunming, Yunnan, China
| | - Qian-Qian Hu
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan, Guangdong, China
| | - Timothy Charles Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Ying-Chun Lu
- Yunnan Agricultural University College of Education and Vocational Education, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yan-Li Liang
- The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National-Local Joint Engineering Research Center on Gemplasm Innovation and Utilization of Chinese Medicinal Materials in Southwest, College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
7
|
Li M, Mount SM, Liu Z. Rosaceae fruit transcriptome database (ROFT)-a useful genomic resource for comparing fruits of apple, peach, strawberry, and raspberry. HORTICULTURE RESEARCH 2023; 10:uhad240. [PMID: 38162465 PMCID: PMC10756754 DOI: 10.1093/hr/uhad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Rosaceae is a large plant family consisting of many economically important fruit crops including peach, apple, pear, strawberry, raspberry, plum, and others. Investigations into their growth and development will promote both basic understanding and progress toward increasing fruit yield and quality. With the ever-increasing high-throughput sequencing data of Rosaceae, comparative studies are hindered by inconsistency of sample collection with regard to tissue, stage, growth conditions, and by vastly different handling of the data. Therefore, databases that enable easy access and effective utilization of directly comparable transcript data are highly desirable. Here, we describe a database for comparative analysis, ROsaceae Fruit Transcriptome database (ROFT), based on RNA-seq data generated from the same laboratory using similarly dissected and staged fruit tissues of four important Rosaceae fruit crops: apple, peach, strawberry, and red raspberry. Hence, the database is unique in allowing easy and robust comparisons among fruit gene expression across the four species. ROFT enables researchers to query orthologous genes and their expression patterns during different fruit developmental stages in the four species, identify tissue-specific and tissue-/stage-specific genes, visualize and compare ortholog expression in different fruit types, explore consensus co-expression networks, and download different data types. The database provides users access to vast amounts of RNA-seq data across the four economically important fruits, enables investigations of fruit type specification and evolution, and facilitates the selection of genes with critical roles in fruit development for further studies.
Collapse
Affiliation(s)
- Muzi Li
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Stephen M Mount
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
8
|
Zhou G, Yin H, Chen F, Wang Y, Gao Q, Yang F, He C, Zhang L, Wan Y. The genome of Areca catechu provides insights into sex determination of monoecious plants. THE NEW PHYTOLOGIST 2022; 236:2327-2343. [PMID: 36089819 DOI: 10.1111/nph.18471] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The areca palm (Areca catechu) has a monoecious spadix, with male flowers on the apical side and females on the basal side. Here, we applied multiomics analysis to investigate sex determination and floral organ development in areca palms. We generated a chromosome-level reference genome of A. catechu with 16 pseudochromosomes, composed of 2.73 Gb and encoding 31 406 genes. Data from RNA-seq and ATAC-seq (assay for transposase accessible chromatin sequencing) suggested that jasmonic acid (JA) synthesis and signal transduction-related genes were differentially expressed between female and male flowers via epigenetic modifications. JA concentration in female flowers was c. 10 times than that in males on the same inflorescence, while JA concentration in hermaphroditic flowers of abnormal inflorescences was about twice that in male flowers of normal inflorescences. JA promotes the development of female flower organs by decreasing the expression of B-function genes, including AGL16, AP3, PIb and PIc. There is also a region on pseudochromosome 15 harboring sex-related genes, including CYP703, LOG, GPAT, AMS and BiP. Among them, CYP703, AMS and BiP were specifically expressed in male flowers.
Collapse
Affiliation(s)
- Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Hongyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Fei Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Hainan Yazhou Bay Seed Laboratory, College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Yicheng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fusun Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Chaozhu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
9
|
Zhang S, Tan FQ, Chung CH, Slavkovic F, Devani RS, Troadec C, Marcel F, Morin H, Camps C, Gomez Roldan MV, Benhamed M, Dogimont C, Boualem A, Bendahmane A. The control of carpel determinacy pathway leads to sex determination
in cucurbits. Science 2022; 378:543-549. [DOI: 10.1126/science.add4250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Male and female unisexual flowers evolved from hermaphroditic ancestors, and control of flower sex is useful for plant breeding. We isolated a female-to-male sex transition mutant in melon and identified the causal gene as the carpel identity gene
CRABS CLAW (CRC)
. We show that the master regulator of sex determination in cucurbits, the transcription factor
WIP1
whose expression orchestrates male flower development, recruits the corepressor TOPLESS to the
CRC
promoter to suppress its expression through histone deacetylation. Impairing TOPLESS-WIP1 physical interaction leads to
CRC
expression, carpel determination, and consequently the expression of the stamina inhibitor, the aminocyclopropane-1-carboxylic acid synthase 7 (
CmACS7
), leading to female flower development. Our findings suggest that sex genes evolved to interfere with flower meristematic function, leading to unisexual flower development.
Collapse
Affiliation(s)
- Siqi Zhang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Feng-Quan Tan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Ching-Hui Chung
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Filip Slavkovic
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Ravi Sureshbhai Devani
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Halima Morin
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Céline Camps
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Maria Victoria Gomez Roldan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Catherine Dogimont
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143 Montfavet, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2); 91190 Gif sur Yvette, France
| |
Collapse
|
10
|
Expression and Functional Analyses of the WIP Gene Family in Arabidopsis. PLANTS 2022; 11:plants11152010. [PMID: 35956487 PMCID: PMC9425439 DOI: 10.3390/plants11152010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022]
Abstract
The WIP family of transcription factors comprises the A1d subgroup of C2H2 zinc finger proteins. This family has six members in Arabidopsis thaliana and most of the known functions have been described by analyzing single knockout mutants. However, it has been shown that WIP2 and its closest paralogs WIP4 and WIP5 have a redundant and essential function in root meristems. It is likely that these and other WIP genes perform more, still unknown, functions. To obtain hints about these other functions, the expression of the six WIP genes was explored. Moreover, phenotypic ana-lyses of overexpressors and wip mutants revealed functions in modulating organ and cell size, stomatal density, and vasculature development.
Collapse
|
11
|
Wittmer J, Heidstra R. A dialogue between generations. NATURE PLANTS 2022; 8:607-608. [PMID: 35710884 DOI: 10.1038/s41477-022-01174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Jana Wittmer
- Plant Science Department, Plant Developmental Biology Group, Wageningen University Research, Wageningen, the Netherlands.
| | - Renze Heidstra
- Plant Science Department, Plant Developmental Biology Group, Wageningen University Research, Wageningen, the Netherlands.
| |
Collapse
|
12
|
Du Y, Roldan MVG, Haraghi A, Haili N, Izhaq F, Verdenaud M, Boualem A, Bendahmane A. Spatially expressed WIP genes control Arabidopsis embryonic root development. NATURE PLANTS 2022; 8:635-645. [PMID: 35710883 DOI: 10.1038/s41477-022-01172-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Development of plant organs is a highly organized process. In Arabidopsis, proper root development requires that distinct cell types and tissue layers are specified and formed in a restricted manner in space and over time. Despite its importance, genetic controls underlying such regularity remain elusive. Here we found that WIP genes expressed in the embryo and suspensor functionally oppose those expressed in the surrounding maternal tissues to orchestrate cell division orientation and cell fate specification in the embryonic root, thereby promoting regular root formation. The maternal WIPs act non-cell autonomously to repress root cell fate specification through SIMILAR TO RADICAL-INDUCED CELL DEATH ONE (SRO) family members. When losing all WIPs, root cells divide irregularly in the early embryo, but this barely alters their fate specification and the morphology of post-embryonic roots. Our results reveal cross-communication between the embryonic and maternal WIPs in controlling root development.
Collapse
Affiliation(s)
- Yujuan Du
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France.
| | - Maria Victoria Gomez Roldan
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Aimen Haraghi
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Nawel Haili
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Farhaj Izhaq
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Marion Verdenaud
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France.
| |
Collapse
|
13
|
Cui H, Chen J, Liu M, Zhang H, Zhang S, Liu D, Chen S. Genome-Wide Analysis of C2H2 Zinc Finger Gene Family and Its Response to Cold and Drought Stress in Sorghum [ Sorghum bicolor (L.) Moench]. Int J Mol Sci 2022; 23:ijms23105571. [PMID: 35628380 PMCID: PMC9146226 DOI: 10.3390/ijms23105571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
C2H2 zinc finger protein (C2H2-ZFP) is one of the most important transcription factor families in higher plants. In this study, a total of 145 C2H2-ZFPs was identified in Sorghum bicolor and randomly distributed on 10 chromosomes. Based on the phylogenetic tree, these zinc finger gene family members were divided into 11 clades, and the gene structure and motif composition of SbC2H2-ZFPs in the same clade were similar. SbC2H2-ZFP members located in the same clade contained similar intron/exon and motif patterns. Thirty-three tandem duplicated SbC2H2-ZFPs and 24 pairs of segmental duplicated genes were identified. Moreover, synteny analysis showed that sorghum had more collinear regions with monocotyledonous plants such as maize and rice than did dicotyledons such as soybean and Arabidopsis. Furthermore, we used quantitative RT-PCR (qRT-PCR) to analyze the expression of C2H2-ZFPs in different organs and demonstrated that the genes responded to cold and drought. For example, Sobic.008G088842 might be activated by cold but is inhibited in drought in the stems and leaves. This work not only revealed an important expanded C2H2-ZFP gene family in Sorghum bicolor but also provides a research basis for determining the role of C2H2-ZFPs in sorghum development and abiotic stress resistance.
Collapse
Affiliation(s)
- Huiying Cui
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
- Correspondence: (H.C.); (S.C.)
| | - Jiaqi Chen
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Mengjiao Liu
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Hongzhi Zhang
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Shuangxi Zhang
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Dan Liu
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
- Correspondence: (H.C.); (S.C.)
| |
Collapse
|
14
|
Masuda K, Ikeda Y, Matsuura T, Kawakatsu T, Tao R, Kubo Y, Ushijima K, Henry IM, Akagi T. Reinvention of hermaphroditism via activation of a RADIALIS-like gene in hexaploid persimmon. NATURE PLANTS 2022; 8:217-224. [PMID: 35301445 DOI: 10.1038/s41477-022-01107-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/10/2022] [Indexed: 05/29/2023]
Abstract
In flowering plants, different lineages have independently transitioned from the ancestral hermaphroditic state into and out of various sexual systems1. Polyploidizations are often associated with this plasticity in sexual systems2,3. Persimmons (the genus Diospyros) have evolved dioecy via lineage-specific palaeoploidizations. More recently, hexaploid D. kaki has established monoecy and also exhibits reversions from male to hermaphrodite flowers in response to natural environmental signals (natural hermaphroditism, NH), or to artificial cytokinin treatment (artificial hermaphroditism, AH). We sought to identify the molecular pathways underlying these polyploid-specific reversions to hermaphroditism. Co-expression network analyses identified regulatory pathways specific to NH or AH transitions. Surprisingly, the two pathways appeared to be antagonistic, with abscisic acid and cytokinin signalling for NH and AH, respectively. Among the genes common to both pathways leading to hermaphroditic flowers, we identified a small-Myb RADIALIS-like gene, named DkRAD, which is specifically activated in hexaploid D. kaki. Consistently, ectopic overexpression of DkRAD in two model plants resulted in hypergrowth of the gynoecium. These results suggest that production of hermaphrodite flowers via polyploidization depends on DkRAD activation, which is not associated with a loss-of-function within the existing sex determination pathway, but rather represents a new path to (or reinvention of) hermaphroditism.
Collapse
Affiliation(s)
- Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Ryutaro Tao
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, USA
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- JST-PRESTO, Saitama, Japan.
| |
Collapse
|
15
|
Ma L, Wang Q, Zheng Y, Guo J, Yuan S, Fu A, Bai C, Zhao X, Zheng S, Wen C, Guo S, Gao L, Grierson D, Zuo J, Xu Y. Cucurbitaceae genome evolution, gene function and molecular breeding. HORTICULTURE RESEARCH 2022; 9:uhab057. [PMID: 35043161 PMCID: PMC8969062 DOI: 10.1093/hr/uhab057] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 05/07/2023]
Abstract
The Cucurbitaceae is one of the most genetically diverse plant families in the world. Many of them are important vegetables or medicinal plants and are widely distributed worldwide. The rapid development of sequencing technologies and bioinformatic algorithms has enabled the generation of genome sequences of numerous important Cucurbitaceae species. This has greatly facilitated research on gene identification, genome evolution, genetic variation and molecular breeding of cucurbit crops. So far, genome sequences of 18 different cucurbit species belonging to tribes Benincaseae, Cucurbiteae, Sicyoeae, Momordiceae and Siraitieae have been deciphered. This review summarizes the genome sequence information, evolutionary relationship, and functional genes associated with important agronomic traits (e.g., fruit quality). The progress of molecular breeding in cucurbit crops and prospects for future applications of Cucurbitaceae genome information are also discussed.
Collapse
Affiliation(s)
- Lili Ma
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Food Biotechnology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qing Wang
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanyan Zheng
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Guo
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and State Key Laboratory of Genetic Engineering, Institute of Biodiversity Sciences and Institute of Plant Biology, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Shuzhi Yuan
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Anzhen Fu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chunmei Bai
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaoyan Zhao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shufang Zheng
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Changlong Wen
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaogui Guo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lipu Gao
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Donald Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
| | - Jinhua Zuo
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yong Xu
- Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China) of Ministry of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing Vegetable Research Center, Institute of Agro-Products Processing and Food Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
16
|
Aamir M, Karmakar P, Singh VK, Kashyap SP, Pandey S, Singh BK, Singh PM, Singh J. A novel insight into transcriptional and epigenetic regulation underlying sex expression and flower development in melon (Cucumis melo L.). PHYSIOLOGIA PLANTARUM 2021; 173:1729-1764. [PMID: 33547804 DOI: 10.1111/ppl.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Melon (Cucumis melo L.) is an important cucurbit and has been considered as a model plant for studying sex determination. The four most common sexual morphotypes in melon are monoecious (A-G-M), gynoecious (--ggM-), andromonoecious (A-G-mm), and hermaphrodite (--ggmm). Sex expression in melons is complex, as the genes and associated networks that govern the sex expression are not fully explored. Recently, RNA-seq transcriptomic profiling, ChIP-qPCR analysis integrated with gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathways predicted the differentially expressed genes including sex-specific ACS and ACO genes, in regulating the sex-expression, phytohormonal cross-talk, signal transduction, and secondary metabolism in melons. Integration of transcriptional control through genetic interaction in between the ACS7, ACS11, and WIP1 in epistatic or hypostatic manner, along with the recruitment of H3K9ac and H3K27me3, epigenetically, overall determine sex expression. Alignment of protein sequences for establishing phylogenetic evolution, motif comparison, and protein-protein interaction supported the structural conservation while presence of the conserved hydrophilic and charged residues across the diverged evolutionary group predicted the functional conservation of the ACS protein. Presence of the putative cis-binding elements or DNA motifs, and its further comparison with DAP-seq-based cistrome and epicistrome of Arabidopsis, unraveled strong ancestry of melons with Arabidopsis. Motif comparison analysis also characterized putative genes and transcription factors involved in ethylene biosynthesis, signal transduction, and hormonal cross-talk related to sex expression. Overall, we have comprehensively reviewed research findings for a deeper insight into transcriptional and epigenetic regulation of sex expression and flower development in melons.
Collapse
Affiliation(s)
- Mohd Aamir
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Pradip Karmakar
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sarvesh Pratap Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Sudhakar Pandey
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Binod Kumar Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Prabhakar Mohan Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| | - Jagdish Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research (ICAR-IIVR), Varanasi, India
| |
Collapse
|
17
|
Xanthopoulou A, Montero-Pau J, Picó B, Boumpas P, Tsaliki E, Paris HS, Tsaftaris A, Kalivas A, Mellidou I, Ganopoulos I. A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms. BMC Genomics 2021; 22:341. [PMID: 33980145 PMCID: PMC8114506 DOI: 10.1186/s12864-021-07683-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. RESULTS In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. CONCLUSIONS These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE), Universitat de València, 46022 Valencia, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Panagiotis Boumpas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Eleni Tsaliki
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Harry S. Paris
- Department of Vegetable Crops and Plant Genetics, Agricultural Research Organization, Newe Ya‘ar Research Center, 3009500 Ramat Yishay, Israel
| | | | - Apostolos Kalivas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| |
Collapse
|
18
|
Martínez C, Jamilena M. To be a male or a female flower, a question of ethylene in cucurbits. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101981. [PMID: 33517096 DOI: 10.1016/j.pbi.2020.101981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Within the Cucurbitaceae family, most of its species develop unisexual female and male flowers, either on the same plant (monoecy) or on different plants (dioecy). As in other plant families, these two sex morphotypes have evolved from hermaphrodite species; however, many evolutionary events have occurred in cucurbits allowing easy conversion from dioecy to monoecy and vice versa. The variability in sex morphotypes is higher in the domesticated species of the family, which together with recent advances in genomics, make cucurbits an ideal model to study the genetic and molecular mechanisms that control sex determination in plants. Conventional studies demonstrated that ethylene was the master regulator of sex determination in cucurbits, although some cultivated species may respond differently to ethylene action. In this article, we survey the new advances in hormonal and genetic control of sex determination in cucurbit species, control which establishes the ethylene biosynthesis and signaling genes as being those that determine the floral meristem towards a male, female or hermaphrodite flower. The interactions between these genes are integrated into a model that explains the occurrence and distribution of unisexal and hermaphrodite flowers within the different sex morphotypes. We underline the significance of this scientific progress with regard to breeding programs for agronomically-important sex-associated traits.
Collapse
Affiliation(s)
- Cecilia Martínez
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almería, 04120 Almería, Spain.
| |
Collapse
|