1
|
Chamness JC, Cody JP, Cruz AJ, Voytas DF. Viral delivery of recombinases activates heritable genetic switches in plants. PLANT PHYSIOLOGY 2025; 197:kiaf073. [PMID: 40111273 DOI: 10.1093/plphys/kiaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 02/22/2025]
Abstract
Viral vectors provide an increasingly versatile platform for transformation-free reagent delivery to plants. RNA viral vectors can be used to induce gene silencing, overexpress proteins, or introduce gene editing reagents; however, they are often constrained by carrying capacity or restricted tropism in germline cells. Site-specific recombinases that catalyze precise genetic rearrangements are powerful tools for genome engineering that vary in size and, potentially, efficacy in plants. In this work, we show that viral vectors based on tobacco rattle virus (TRV) deliver and stably express four recombinases ranging in size from ∼0.6 to ∼1.5 kb and achieve simultaneous marker removal and reporter activation through targeted excision in transgenic Nicotiana benthamiana lines. TRV vectors with Cre, FLP, CinH, and Integrase13 efficiently mediated recombination in infected somatic tissue and led to heritable modifications at high frequency. An excision-activated Ruby reporter enabled simple and high-resolution tracing of infected cell lineages without the need for molecular genotyping. Together, our experiments broaden the scope of viral recombinase delivery and offer insights into infection dynamics that may be useful in developing future viral vectors.
Collapse
Affiliation(s)
- James C Chamness
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55108, USA
- Terrana Biosciences, Cambridge, MA 02138, USA
| | - Jon P Cody
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55108, USA
| | - Anna J Cruz
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55108, USA
| | - Daniel F Voytas
- Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55108, USA
| |
Collapse
|
2
|
Birchler JA, Kelly J, Singh J, Liu H, Zhang Z, Char SN, Sharma M, Yang H, Albert PS, Yang B. Synthetic minichromosomes in plants: past, present, and promise. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2356-2366. [PMID: 39546384 DOI: 10.1111/tpj.17142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
The status of engineered mini-chromosomes/artificial chromosomes/synthetic chromosomes in plants is summarized. Their promise is that they provide a means to accumulate foreign genes on an independent entity other than the normal chromosomes, which would facilitate stacking of novel traits in a way that would not be linked to endogenous genes and that would facilitate transfer between lines. Centromeres in plants are epigenetic, and therefore the isolation of DNA underlying centromeres and reintroduction into plant cells will not establish a functional kinetochore, which obviates this approach for in vitro assembly of plant artificial chromosomes. This issue was bypassed by using telomere-mediated chromosomal truncation to produce mini-chromosomes with little more than an endogenous centromere that could in turn be used as a foundation to build synthetic chromosomes. Site-specific recombinases and various iterations of CRISPR-Cas9 editing provide many tools for the development and re-engineering of synthetic chromosomes.
Collapse
Affiliation(s)
- James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jacob Kelly
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jasnoor Singh
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Hua Liu
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Zhengzhi Zhang
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Si Nian Char
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Malika Sharma
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Patrice S Albert
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Bing Yang
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, 65211, USA
- Donald Danforth Plant Sciences Center, St. Louis, Missouri, 63132, USA
| |
Collapse
|
3
|
Maranas CJ, George W, Scallon SK, VanGilder S, Nemhauser JL, Guiziou S. A history-dependent integrase recorder of plant gene expression with single-cell resolution. Nat Commun 2024; 15:9362. [PMID: 39472426 PMCID: PMC11522408 DOI: 10.1038/s41467-024-53716-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
During development, most cells experience a progressive restriction of fate that ultimately results in a fully differentiated mature state. Understanding more about the gene expression patterns that underlie developmental programs can inform engineering efforts for new or optimized forms. Here, we present a four-state integrase-based recorder of gene expression history and demonstrate its use in tracking gene expression events in Arabidopsis thaliana in two developmental contexts: lateral root initiation and stomatal differentiation. The recorder uses two serine integrases to mediate sequential DNA recombination events, resulting in step-wise, history-dependent switching between expression of fluorescent reporters. By using promoters that express at different times along each of the two differentiation pathways to drive integrase expression, we tie fluorescent status to an ordered progression of gene expression along the developmental trajectory. In one snapshot of a mature tissue, our recorder is able to reveal past gene expression with single cell resolution. In this way, we are able to capture heterogeneity in stomatal development, confirming the existence of two alternate paths of differentiation.
Collapse
Affiliation(s)
| | - Wesley George
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Sarah K Scallon
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Sydney VanGilder
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Sarah Guiziou
- Engineering Biology, Earlham Institute, Norwich, UK.
| |
Collapse
|
4
|
Guiziou S. Biocomputing in plants, from proof of concept to application. Curr Opin Biotechnol 2024; 87:103146. [PMID: 38781700 DOI: 10.1016/j.copbio.2024.103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
In response to the challenges of climate change and the transition toward sustainability, synthetic biology offers innovative solutions. Most current plant synthetic biology applications rely on the constitutive expression of enzymes and regulators. To engineer plant phenotypes tuneable to environmental conditions and plant cellular states, the integration of multiple signals in synthetic circuits is required. While most circuits are developed in model organisms, numerous tools were recently developed to implement biocomputation in plant synthetic circuits. I presented in this review the tools and design methods for logic circuit implementation in plants. I highlighted recent and potential applications of those circuits to understand and engineer plant interaction with the environment, development, and metabolic pathways.
Collapse
Affiliation(s)
- Sarah Guiziou
- Engineering Biology, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK.
| |
Collapse
|
5
|
de Oliveira MA, Florentino LH, Sales TT, Lima RN, Barros LRC, Limia CG, Almeida MSM, Robledo ML, Barros LMG, Melo EO, Bittencourt DM, Rehen SK, Bonamino MH, Rech E. Protocol for the establishment of a serine integrase-based platform for functional validation of genetic switch controllers in eukaryotic cells. PLoS One 2024; 19:e0303999. [PMID: 38781126 PMCID: PMC11115199 DOI: 10.1371/journal.pone.0303999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Serine integrases (Ints) are a family of site-specific recombinases (SSRs) encoded by some bacteriophages to integrate their genetic material into the genome of a host. Their ability to rearrange DNA sequences in different ways including inversion, excision, or insertion with no help from endogenous molecular machinery, confers important biotechnological value as genetic editing tools with high host plasticity. Despite advances in their use in prokaryotic cells, only a few Ints are currently used as gene editors in eukaryotes, partly due to the functional loss and cytotoxicity presented by some candidates in more complex organisms. To help expand the number of Ints available for the assembly of more complex multifunctional circuits in eukaryotic cells, this protocol describes a platform for the assembly and functional screening of serine-integrase-based genetic switches designed to control gene expression by directional inversions of DNA sequence orientation. The system consists of two sets of plasmids, an effector module and a reporter module, both sets assembled with regulatory components (as promoter and terminator regions) appropriate for expression in mammals, including humans, and plants. The complete method involves plasmid design, DNA delivery, testing and both molecular and phenotypical assessment of results. This platform presents a suitable workflow for the identification and functional validation of new tools for the genetic regulation and reprogramming of organisms with importance in different fields, from medical applications to crop enhancement, as shown by the initial results obtained. This protocol can be completed in 4 weeks for mammalian cells or up to 8 weeks for plant cells, considering cell culture or plant growth time.
Collapse
Affiliation(s)
- Marco A. de Oliveira
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, Distrito Federal, Brazil
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
| | - Lilian H. Florentino
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, Distrito Federal, Brazil
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Thais T. Sales
- Department of Cell Biology, Institute of Biological Science, University of Brasília, Brasília, Distrito Federal, Brazil
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Rayane N. Lima
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Luciana R. C. Barros
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina de Universidade de São Paulo, São Paulo, Brazil
| | - Cintia G. Limia
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Mariana S. M. Almeida
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Maria L. Robledo
- Molecular Carcinogenesis Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Leila M. G. Barros
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Eduardo O. Melo
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Daniela M. Bittencourt
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| | - Stevens K. Rehen
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Martín H. Bonamino
- Cell and Gene Therapy Program, Research Coordination, National Cancer Institute (INCA), Rio de Janeiro, Brazil
- Vice-Presidency of Research and Biological Collections (VPPCB), FIOCRUZ – Oswaldo Cruz Foundation Institute, Rio de Janeiro, Brazil
| | - Elibio Rech
- National Institute of Science and Technology in Synthetic Biology (INCT BioSyn), Brasília, Distrito Federal, Brazil
- Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
| |
Collapse
|
6
|
Franco RAL, Brenner G, Zocca VFB, de Paiva GB, Lima RN, Rech EL, Amaral DT, Lins MRCR, Pedrolli DB. Signal Amplification for Cell-Free Biosensors, an Analog-to-Digital Converter. ACS Synth Biol 2023; 12:2819-2826. [PMID: 37792474 DOI: 10.1021/acssynbio.3c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Toehold switches are biosensors useful for the detection of endogenous and environmental RNAs. They have been successfully engineered to detect virus RNAs in cell-free gene expression reactions. Their inherent sequence programmability makes engineering a fast and predictable process. Despite improvements in the design, toehold switches suffer from leaky translation in the OFF state, which compromises the fold change and sensitivity of the biosensor. To address this, we constructed and tested signal amplification circuits for three toehold switches triggered by Dengue and SARS-CoV-2 RNAs and an artificial RNA. The serine integrase circuit efficiently contained leakage, boosted the expression fold change from OFF to ON, and decreased the detection limit of the switches by 3-4 orders of magnitude. Ultimately, the integrase circuit converted the analog switches' signals into digital-like output. The circuit is broadly useful for biosensors and eliminates the hard work of designing and testing multiple switches to find the best possible performer.
Collapse
Affiliation(s)
- Rafael A L Franco
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau km1, 14800-903 Araraquara, Brazil
| | - Gabriel Brenner
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau km1, 14800-903 Araraquara, Brazil
| | - Vitória F B Zocca
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau km1, 14800-903 Araraquara, Brazil
| | - Gabriela B de Paiva
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau km1, 14800-903 Araraquara, Brazil
| | - Rayane N Lima
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology - Synthetic Biology, 70770-917 Brasília, Brazil
| | - Elibio L Rech
- Embrapa Genetic Resources and Biotechnology, National Institute of Science and Technology - Synthetic Biology, 70770-917 Brasília, Brazil
| | - Danilo T Amaral
- Federal University of ABC (UFABC), Center for Natural and Human Sciences, Campus Santo André, Avenida dos Estados 5001, 09210-580 Santo André, Brazil
| | - Milca R C R Lins
- Federal University of ABC (UFABC), Center for Natural and Human Sciences, Campus Santo André, Avenida dos Estados 5001, 09210-580 Santo André, Brazil
| | - Danielle B Pedrolli
- Universidade Estadual Paulista (UNESP), School of Pharmaceutical Sciences, Department of Bioprocess Engineering and Biotechnology, Rodovia Araraquara-Jau km1, 14800-903 Araraquara, Brazil
| |
Collapse
|
7
|
Guiziou S, Maranas CJ, Chu JC, Nemhauser JL. An integrase toolbox to record gene-expression during plant development. Nat Commun 2023; 14:1844. [PMID: 37012288 PMCID: PMC10070421 DOI: 10.1038/s41467-023-37607-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
There are many open questions about the mechanisms that coordinate the dynamic, multicellular behaviors required for organogenesis. Synthetic circuits that can record in vivo signaling networks have been critical in elucidating animal development. Here, we report on the transfer of this technology to plants using orthogonal serine integrases to mediate site-specific and irreversible DNA recombination visualized by switching between fluorescent reporters. When combined with promoters expressed during lateral root initiation, integrases amplify reporter signal and permanently mark all descendants. In addition, we present a suite of methods to tune the threshold for integrase switching, including: RNA/protein degradation tags, a nuclear localization signal, and a split-intein system. These tools improve the robustness of integrase-mediated switching with different promoters and the stability of switching behavior over multiple generations. Although each promoter requires tuning for optimal performance, this integrase toolbox can be used to build history-dependent circuits to decode the order of expression during organogenesis in many contexts.
Collapse
Affiliation(s)
- Sarah Guiziou
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | | | - Jonah C Chu
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
8
|
Gomide MDS, Leitão MDC, Coelho CM. Biocircuits in plants and eukaryotic algae. FRONTIERS IN PLANT SCIENCE 2022; 13:982959. [PMID: 36212277 PMCID: PMC9545776 DOI: 10.3389/fpls.2022.982959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As one of synthetic biology's foundations, biocircuits are a strategy of genetic parts assembling to recognize a signal and to produce a desirable output to interfere with a biological function. In this review, we revisited the progress in the biocircuits technology basis and its mandatory elements, such as the characterization and assembly of functional parts. Furthermore, for a successful implementation, the transcriptional control systems are a relevant point, and the computational tools help to predict the best combinations among the biological parts planned to be used to achieve the desirable phenotype. However, many challenges are involved in delivering and stabilizing the synthetic structures. Some research experiences, such as the golden crops, biosensors, and artificial photosynthetic structures, can indicate the positive and limiting aspects of the practice. Finally, we envision that the modulatory structural feature and the possibility of finer gene regulation through biocircuits can contribute to the complex design of synthetic chromosomes aiming to develop plants and algae with new or improved functions.
Collapse
Affiliation(s)
- Mayna da Silveira Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
- School of Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Matheus de Castro Leitão
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
9
|
Eid A, Qi Y. Prime editor integrase systems boost targeted DNA insertion and beyond. Trends Biotechnol 2022; 40:907-909. [PMID: 35667925 DOI: 10.1016/j.tibtech.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022]
Abstract
Previously developed genome engineering tools cannot efficiently direct site-specific long DNA insertion. Built on the prime editing platform, two recent studies have reported integrase-mediated site-specific long DNA integration in the human genome. These prime editor integrase (PEI) systems will unleash many exciting applications in humans, animals, and plants.
Collapse
Affiliation(s)
- Ayman Eid
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| |
Collapse
|
10
|
Gao H, Smith MCM. Use of orthogonal serine integrases to multiplex plasmid conjugation and integration from E. coli into Streptomyces. Access Microbiol 2022; 3:000291. [PMID: 35024553 PMCID: PMC8749152 DOI: 10.1099/acmi.0.000291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Some major producers of useful bioactive natural products belong to the genus Streptomyces or related actinobacteria. Genetic engineering of these bacteria and the pathways that synthesize their valuable products often relies on serine integrases. To further improve the flexibility and efficiency of genome engineering via serine integrases, we explored whether multiple integrating vectors encoding orthogonally active serine integrases can be introduced simultaneously into Streptomyces recipients via conjugal transfer and integration. Pairwise combinations of Escherichia coli donors containing vectors encoding orthogonal serine integrases were used in each conjugation. Using donors containing plasmids (of various sizes) encoding either the φBT1 or the φC31 integration systems, we observed reproducible simultaneous plasmid integration into Streptomyces coelicolor and Streptomyces lividans at moderate frequencies after conjugation. This work demonstrated how site-specific recombination based on orthogonal serine integrases can save researchers time in genome engineering experiments in Streptomyces.
Collapse
Affiliation(s)
- Hong Gao
- Department of Biology, University of York, York YO10 5DD, UK.,School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BA, UK.,National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
| | | |
Collapse
|
11
|
Shin S, Kim SH, Lee JS, Lee GM. Streamlined Human Cell-Based Recombinase-Mediated Cassette Exchange Platform Enables Multigene Expression for the Production of Therapeutic Proteins. ACS Synth Biol 2021; 10:1715-1727. [PMID: 34133132 DOI: 10.1021/acssynbio.1c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A platform, based on targeted integration of transgenes using recombinase-mediated cassette exchange (RMCE) coupled with CRISPR/Cas9, is increasingly being used for the development of mammalian cell lines that produce therapeutic proteins, because of reduced clonal variation and predictable transgene expression. However, low efficiency of the RMCE process has hampered its application in multicopy or multisite integration of transgenes. To improve RMCE efficiency, nuclear transport of RMCE components such as site-specific recombinase and donor plasmid was accelerated by incorporation of nuclear localization signal and DNA nuclear-targeting sequence, respectively. Consequently, the efficiency of RMCE in dual-landing pad human embryonic kidney 293 (HEK293) cell lines harboring identical or orthogonal pairs of recombination sites at two well-known human safe harbors (AAVS1 and ROSA26 loci), increased 6.7- and 8.1-fold, respectively. This platform with enhanced RMCE efficiency enabled simultaneous integration of transgenes at the two sites using a single transfection without performing selection and enrichment processes. The use of a homotypic dual-landing pad HEK293 cell line capable of incorporating the same transgenes at two sites resulted in a 2-fold increase in the transgene expression level compared to a single-landing pad HEK293 cell line. In addition, the use of a heterotypic dual-landing pad HEK293 cell line, which can incorporate transgenes for a recombinant protein at one site and an effector transgene for cell engineering at another site, increased recombinant protein production. Overall, a streamlined RMCE platform can be a versatile tool for mammalian cell line development by facilitating multigene expression at genomic safe harbors.
Collapse
Affiliation(s)
- Seunghyeon Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
13
|
Manfrão-Netto JHC, Queiroz EB, Rodrigues KA, Coelho CM, Paes HC, Rech EL, Parachin NS. Evaluation of Ogataea ( Hansenula) polymorpha for Hyaluronic Acid Production. Microorganisms 2021; 9:microorganisms9020312. [PMID: 33546444 PMCID: PMC7913781 DOI: 10.3390/microorganisms9020312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/29/2022] Open
Abstract
Hyaluronic acid (HA) is a biopolymer formed by UDP-glucuronic acid and UDP-N-acetyl-glucosamine disaccharide units linked by β-1,4 and β-1,3 glycosidic bonds. It is widely employed in medical and cosmetic procedures. HA is synthesized by hyaluronan synthase (HAS), which catalyzes the precursors’ ligation in the cytosol, elongates the polymer chain, and exports it to the extracellular space. Here, we engineer Ogataea (Hansenula) polymorpha for HA production by inserting the genes encoding UDP-glucose 6-dehydrogenase, for UDP-glucuronic acid production, and HAS. Two microbial HAS, from Streptococcus zooepidemicus (hasAs) and Pasteurella multocida (hasAp), were evaluated separately. Additionally, we assessed a genetic switch using integrases in O. polymorpha to uncouple HA production from growth. Four strains were constructed containing both has genes under the control of different promoters. In the strain containing the genetic switch, HA production was verified by a capsule-like layer around the cells by scanning electron microscopy in the first 24 h of cultivation. For the other strains, the HA was quantified only after 48 h and in an optimized medium, indicating that HA production in O. polymorpha is limited by cultivation conditions. Nevertheless, these results provide a proof-of-principle that O. polymorpha is a suitable host for HA production.
Collapse
Affiliation(s)
- João Heitor Colombelli Manfrão-Netto
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
| | - Enzo Bento Queiroz
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
| | - Kelly Assis Rodrigues
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
| | - Cintia M. Coelho
- Department of Genetics and Morphology, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil;
| | - Hugo Costa Paes
- Clinical Medicine Division, University of Brasília Medical School, University of Brasília, Brasília 70910-900, Brazil;
| | - Elibio Leopoldo Rech
- Brazilian Agriculture Research Corporation—Embrapa—Genetic Resources and Biotechnology—CENARGEN, Brasília 70770-917, Brazil;
| | - Nádia Skorupa Parachin
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
- Ginkgo Bioworks, Boston, MA 02210, USA
- Correspondence:
| |
Collapse
|
14
|
Marucci L, Barberis M, Karr J, Ray O, Race PR, de Souza Andrade M, Grierson C, Hoffmann SA, Landon S, Rech E, Rees-Garbutt J, Seabrook R, Shaw W, Woods C. Computer-Aided Whole-Cell Design: Taking a Holistic Approach by Integrating Synthetic With Systems Biology. Front Bioeng Biotechnol 2020; 8:942. [PMID: 32850764 PMCID: PMC7426639 DOI: 10.3389/fbioe.2020.00942] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 01/03/2023] Open
Abstract
Computer-aided design (CAD) for synthetic biology promises to accelerate the rational and robust engineering of biological systems. It requires both detailed and quantitative mathematical and experimental models of the processes to (re)design biology, and software and tools for genetic engineering and DNA assembly. Ultimately, the increased precision in the design phase will have a dramatic impact on the production of designer cells and organisms with bespoke functions and increased modularity. CAD strategies require quantitative models of cells that can capture multiscale processes and link genotypes to phenotypes. Here, we present a perspective on how whole-cell, multiscale models could transform design-build-test-learn cycles in synthetic biology. We show how these models could significantly aid in the design and learn phases while reducing experimental testing by presenting case studies spanning from genome minimization to cell-free systems. We also discuss several challenges for the realization of our vision. The possibility to describe and build whole-cells in silico offers an opportunity to develop increasingly automatized, precise and accessible CAD tools and strategies.
Collapse
Affiliation(s)
- Lucia Marucci
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom.,Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, United Kingdom.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jonathan Karr
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Oliver Ray
- Department of Computer Science, University of Bristol, Bristol, United Kingdom
| | - Paul R Race
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Miguel de Souza Andrade
- Brazilian Agricultural Research Corporation/National Institute of Science and Technology - Synthetic Biology, Brasília, Brazil.,Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Claire Grierson
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Stefan Andreas Hoffmann
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Sophie Landon
- Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom.,Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom
| | - Elibio Rech
- Brazilian Agricultural Research Corporation/National Institute of Science and Technology - Synthetic Biology, Brasília, Brazil
| | - Joshua Rees-Garbutt
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Richard Seabrook
- Elizabeth Blackwell Institute for Health Research (EBI), University of Bristol, Bristol, United Kingdom
| | - William Shaw
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Christopher Woods
- Bristol Centre for Synthetic Biology (BrisSynBio), University of Bristol, Bristol, United Kingdom.,School of Chemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|