1
|
Hiraiwa S, Takeshita S, Terano T, Hayashi R, Suzuki K, Tajiri R, Kojima T. Unveiling the cell dynamics during the final shape formation of the tarsus in Drosophila adult leg by live imaging. Dev Genes Evol 2024; 234:117-133. [PMID: 38977431 PMCID: PMC11611951 DOI: 10.1007/s00427-024-00719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Organisms display a remarkable diversity in their shapes. Although substantial progress has been made in unraveling the mechanisms that govern cell fate determination during development, the mechanisms by which fate-determined cells give rise to the final shapes of organisms remain largely unknown. This study describes in detail the process of the final shape formation of the tarsus, which is near the distal tip of the adult leg, during the pupal stage in Drosophila melanogaster. Days-long live imaging revealed unexpectedly complicated cellular dynamics. The epithelial cells transiently form the intriguing structure, which we named the Parthenon-like structure. The basal surface of the epithelial cells and localization of the basement membrane protein initially show a mesh-like structure and rapidly shrink into the membranous structure during the formation and disappearance of the Parthenon-like structure. Furthermore, macrophage-like cells are observed moving around actively in the Parthenon-like structure and engulfing epithelial cells. The findings in this research are expected to significantly contribute to our understanding of the mechanisms involved in shaping the final structure of the adult tarsus.
Collapse
Affiliation(s)
- Shotaro Hiraiwa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Shumpei Takeshita
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Tensho Terano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Ryuhei Hayashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Koyo Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Reiko Tajiri
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
- Present address: Laboratory for Extracellular Morphogenesis, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan
| | - Tetsuya Kojima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Biosciences Building 501, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.
| |
Collapse
|
2
|
Tamura Y, Maeda S, Takahashi H, Aoto Y, Matsuki T, Seki K. GABAergic circuit interaction between central amygdala and bed nucleus of the stria terminalis in lipopolysaccharide-induced despair-like behavior. Physiol Behav 2024; 288:114753. [PMID: 39551417 DOI: 10.1016/j.physbeh.2024.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Hyperexcitability of central amygdala (CeA) induces depressive symptoms. The bed nucleus of the stria terminalis (BNST) receives GABAergic input from the CeA. However, it remains unclear whether the GABAergic neurons in the CeA projecting to BNST contribute to major depression. Here, we investigated the roles of GABAergic neurons in CeA and BNST in lipopolysaccharide (LPS)-induced despair-like behavior. We generated adeno-associated virus vectors (AAV) carrying shRNA against Gad67 to knock down GAD67 expression in CeA (Gad67-KD-CeA) or BNST (Gad67-KD-BNST) in C57BL/6J male mice. Despair-like behavior was assessed by tail suspension test (TST) 24 h after LPS administration. Saline-treated Gad67-KD-CeA mice exhibited longer immobility during TST than saline-treated AAV-injected control (AAV-Cont) mice. Although LPS increased immobility time in AAV-Cont mice, it did not affect immobility time in Gad67-KD-CeA mice. While LPS did not affect the immobility time in Gad67-KD-BNST mice, it increased immobility time in AAV-Cont mice. We injected GFP-expressing AAV with a Dlx promoter, specifically expressed in GABAergic neurons, into CeA, and FluoroGold, a retrograde neuronal tracer, into the BNST. GFP signals associated with CeA GABAergic neurons were detected in the BNST, contacting c-fos and GAD67-expressed cells following LPS. We detected the FluoroGold signals in GAD67- and c-fos-expressed neurons in the CeA after LPS administration. Bilateral intra-BNST injection of muscimol (2 pmol), a GABAA receptor agonist, increased immobility time during TST. These findings suggest that LPS-decreased GABAergic activity in the CeA may lead to disinhibition of GABAergic interneurons in the BNST, resulting in GABAA receptor activation and subsequently induces despair-like behavior.
Collapse
Affiliation(s)
- Yuka Tamura
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Sakura Maeda
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Haruna Takahashi
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Yuta Aoto
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan
| | - Tohru Matsuki
- Department of Cellular Pathology, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Aichi 480-0392, Japan.
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
3
|
Sandal S, Singh S, Bansal G, Kaur R, Mogilicherla K, Pandher S, Roy A, Kaur G, Rathore P, Kalia A. Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae). Int J Mol Sci 2023; 24:ijms24119161. [PMID: 37298113 DOI: 10.3390/ijms24119161] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
The spotted bollworm Earias vittella (Lepidoptera: Nolidae) is a polyphagous pest with enormous economic significance, primarily affecting cotton and okra. However, the lack of gene sequence information on this pest has a significant constraint on molecular investigations and the formulation of superior pest management strategies. An RNA-seq-based transcriptome study was conducted to alleviate such limitations, and de novo assembly was performed to obtain transcript sequences of this pest. Reference gene identification across E. vittella developmental stages and RNAi treatments were conducted using its sequence information, which resulted in identifying transcription elongation factor (TEF), V-type proton ATPase (V-ATPase), and Glyceraldehyde -3-phosphate dehydrogenase (GAPDH) as the most suitable reference genes for normalization in RT-qPCR-based gene expression studies. The present study also identified important developmental, RNAi pathway, and RNAi target genes and performed life-stage developmental expression analysis using RT-qPCR to select the optimal targets for RNAi. We found that naked dsRNA degradation in the E. vittella hemolymph is the primary reason for poor RNAi. A total of six genes including Juvenile hormone methyl transferase (JHAMT), Chitin synthase (CHS), Aminopeptidase (AMN), Cadherin (CAD), Alpha-amylase (AMY), and V-type proton ATPase (V-ATPase) were selected and knocked down significantly with three different nanoparticles encapsulated dsRNA conjugates, i.e., Chitosan-dsRNA, carbon quantum dots-dsRNA (CQD-dsRNA), and Lipofectamine-dsRNA conjugate. These results demonstrate that feeding nanoparticle-shielded dsRNA silences target genes and suggests that nanoparticle-based RNAi can efficiently manage this pest.
Collapse
Affiliation(s)
- Shelja Sandal
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
- Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 140072, Punjab, India
| | - Satnam Singh
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Gulshan Bansal
- Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 140072, Punjab, India
| | - Ramandeep Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha, Czech Republic
| | - Suneet Pandher
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Praha, Czech Republic
| | - Gurmeet Kaur
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Pankaj Rathore
- Regional Research Station, Punjab Agricultural University, Faridkot 151203, Punjab, India
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| |
Collapse
|
4
|
Formation of False Context Fear Memory Is Regulated by Hypothalamic Corticotropin-Releasing Factor in Mice. Int J Mol Sci 2022; 23:ijms23116286. [PMID: 35682965 PMCID: PMC9181353 DOI: 10.3390/ijms23116286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/10/2022] Open
Abstract
Traumatic events frequently produce false fear memories. We investigated the effect of hypothalamic corticotropin-releasing factor (CRF) knockdown (Hy-Crf-KD) or overexpression (Hy-CRF-OE) on contextual fear memory, as fear stress-released CRF and hypothalamic-pituitary-adrenal axis activation affects the memory system. Mice were placed in a chamber with an electric footshock as a conditioning stimulus (CS) in Context A, then exposed to a novel chamber without CS, as Context B, at 3 h (B-3h) or 24 h (B-24h). The freezing response in B-3h was intensified in the experimental mice, compared to control mice not exposed to CS, indicating that a false fear memory was formed at 3 h. The within-group freezing level at B-24h was higher than that at B-3h, indicating that false context fear memory was enhanced at B-24h. The difference in freezing levels between B-3h and B-24h in Hy-Crf-KD mice was larger than that of controls. In Hy-CRF-OE mice, the freezing level at B-3h was higher than that of control and Hy-Crf-KD mice, while the freezing level in B-24h was similar to that in B-3h. Locomotor activity before CS and freezing level during CS were similar among the groups. Therefore, we hypothesized that Hy-Crf-KD potentiates the induction of false context fear memory, while Hy-CRF-OE enhances the onset of false fear memory formation.
Collapse
|
5
|
NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster. Nat Methods 2022; 19:620-627. [PMID: 35545713 DOI: 10.1038/s41592-022-01466-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/23/2022] [Indexed: 11/08/2022]
Abstract
Animal behavior emerges from an interaction between neural network dynamics, musculoskeletal properties and the physical environment. Accessing and understanding the interplay between these elements requires the development of integrative and morphologically realistic neuromechanical simulations. Here we present NeuroMechFly, a data-driven model of the widely studied organism, Drosophila melanogaster. NeuroMechFly combines four independent computational modules: a physics-based simulation environment, a biomechanical exoskeleton, muscle models and neural network controllers. To enable use cases, we first define the minimum degrees of freedom of the leg from real three-dimensional kinematic measurements during walking and grooming. Then, we show how, by replaying these behaviors in the simulator, one can predict otherwise unmeasured torques and contact forces. Finally, we leverage NeuroMechFly's full neuromechanical capacity to discover neural networks and muscle parameters that drive locomotor gaits optimized for speed and stability. Thus, NeuroMechFly can increase our understanding of how behaviors emerge from interactions between complex neuromechanical systems and their physical surroundings.
Collapse
|
6
|
Hayashi T, Tomomizu T, Sushida T, Akiyama M, Ei SI, Sato M. Tiling mechanisms of the Drosophila compound eye through geometrical tessellation. Curr Biol 2022; 32:2101-2109.e5. [PMID: 35390281 DOI: 10.1016/j.cub.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Tiling patterns are observed in many biological structures. The compound eye is an interesting example of tiling and is often constructed by hexagonal arrays of ommatidia, the optical unit of the compound eye. Hexagonal tiling may be common due to mechanical restrictions such as structural robustness, minimal boundary length, and space-filling efficiency. However, some insects exhibit tetragonal facets.1-4 Some aquatic crustaceans, such as shrimp and lobsters, have evolved with tetragonal facets.5-8 Mantis shrimp is an insightful example as its compound eye has a tetragonal midband region sandwiched between hexagonal hemispheres.9,10 This casts doubt on the naive explanation that hexagonal tiles recur in nature because of their mechanical stability. Similarly, tetragonal tiling patterns are also observed in some Drosophila small-eye mutants, whereas the wild-type eyes are hexagonal, suggesting that the ommatidial tiling is not simply explained by such mechanical restrictions. If so, how are the hexagonal and tetragonal patterns controlled during development? Here, we demonstrate that geometrical tessellation determines the ommatidial tiling patterns. In small-eye mutants, the hexagonal pattern is transformed into a tetragonal pattern as the relative positions of neighboring ommatidia are stretched along the dorsal-ventral axis. We propose that the regular distribution of ommatidia and their uniform growth collectively play an essential role in the establishment of tetragonal and hexagonal tiling patterns in compound eyes.
Collapse
Affiliation(s)
- Takashi Hayashi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| | - Takeshi Tomomizu
- Graduate School of Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takamichi Sushida
- Department of Computer Science and Technology, Salesian Polytechnic, 4-6-8 Oyamagaoka, Machida, Tokyo 194-0215, Japan
| | - Masakazu Akiyama
- Faculty of Science, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Shin-Ichiro Ei
- Department of Mathematics, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
7
|
Kimura KI, Hosoda N. Crucial role of framework with cytoskeletal actin filaments for shaping microstructure of footpad setae in the ladybird beetle, Harmonia axyridis. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:100998. [PMID: 33249365 DOI: 10.1016/j.asd.2020.100998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
Insects that can walk on smooth surfaces have specialized structures, footpads, on their legs. Footpads play an important role in adhesion to the substrate surface. Although the morphology and function of footpads have been studied, the mechanism of their formation is still elusive. In the ladybird beetle (Harmonia axyridis), hairy footpads are present on the first and second tarsal segments of the legs. The footpads are covered with hundreds of hairs, i.e. setae, whose tips consist of four types: pointed, lanceolate, spatular, and discoidal. We examined the formation of the footpad during the pupal stage using immuno-staining and fluorescent-conjugated phalloidin staining. We found that a seta was composed of a shaft and a socket and some setae were accompanied by a neuron. By the mid-pupal stages, the shaft cells elongated to form a setal structure. Cytoskeletal actin bundles ramified to create a framework for the setal tip structure of the cells. We examined the effects of the application of cytochalasin D, which inhibits actin polymerization, on the formation of footpad setal structures. The results showed that the setal tips were deformed by the inhibition of actin polymerization. Our observations reveal that cytoskeletal actin filaments are involved in shaping the setae.
Collapse
Affiliation(s)
- Ken-Ichi Kimura
- Laboratory of Biology, Sapporo Campus, Hokkaido University of Education, Sapporo, 002-8502, Japan.
| | - Naoe Hosoda
- Research Center for Structural Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| |
Collapse
|