1
|
Seong CS, Huang C, Boese AC, Hou Y, Koo J, Mouw JK, Rupji M, Joseph G, Johnston HR, Claussen H, Switchenko JM, Behera M, Churchman M, Kolesar JM, Arnold SM, Kerrigan K, Akerley W, Colman H, Johns MA, Arciero C, Zhou W, Marcus AI, Ramalingam SS, Fu H, Gilbert-Ross M. Loss of the endocytic tumor suppressor HD-PTP phenocopies LKB1 and promotes RAS-driven oncogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525772. [PMID: 36747658 PMCID: PMC9900931 DOI: 10.1101/2023.01.26.525772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Oncogenic RAS mutations drive aggressive cancers that are difficult to treat in the clinic, and while direct inhibition of the most common KRAS variant in lung adenocarcinoma (G12C) is undergoing clinical evaluation, a wide spectrum of oncogenic RAS variants together make up a large percentage of untargetable lung and GI cancers. Here we report that loss-of-function alterations (mutations and deep deletions) in the gene that encodes HD-PTP (PTPN23) occur in up to 14% of lung cancers in the ORIEN Avatar lung cancer cohort, associate with adenosquamous histology, and occur alongside an altered spectrum of KRAS alleles. Furthermore, we show that in publicly available early-stage NSCLC studies loss of HD-PTP is mutually exclusive with loss of LKB1, which suggests they restrict a common oncogenic pathway in early lung tumorigenesis. In support of this, knockdown of HD-PTP in RAS-transformed lung cancer cells is sufficient to promote FAK-dependent invasion. Lastly, knockdown of the Drosophila homolog of HD-PTP (dHD-PTP/Myopic) synergizes to promote RAS-dependent neoplastic progression. Our findings highlight a novel tumor suppressor that can restrict RAS-driven lung cancer oncogenesis and identify a targetable pathway for personalized therapeutic approaches for adenosquamous lung cancer.
Collapse
Affiliation(s)
- Chang-Soo Seong
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
| | - Chunzi Huang
- Cancer Animal Models Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Austin C. Boese
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
- Cancer Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA, USA
| | - Yuning Hou
- Cancer Animal Models Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Junghui Koo
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
| | - Janna K. Mouw
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
| | - Manali Rupji
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Greg Joseph
- Data and Technology Applications Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | - Henry Claussen
- Emory Integrated Computational Core, Emory University, Atlanta, GA
| | - Jeffrey M. Switchenko
- Biostatistics Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Madhusmita Behera
- Data and Technology Applications Shared Resource, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | | | - Jill M. Kolesar
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | - Katie Kerrigan
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Wallace Akerley
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Howard Colman
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Cletus Arciero
- Department of Surgery, Emory University School of Medicine, Atlanta, GA USA
| | - Wei Zhou
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Adam I. Marcus
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Suresh S. Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Haian Fu
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Liang H, Chen Z, Yang R, Huang Q, Chen H, Chen W, Zou L, Wei P, Wei S, Yang Y, Zhang Y. Methyl Gallate Suppresses the Migration, Invasion, and Epithelial-Mesenchymal Transition of Hepatocellular Carcinoma Cells via the AMPK/NF-κB Signaling Pathway in vitro and in vivo. Front Pharmacol 2022; 13:894285. [PMID: 35770085 PMCID: PMC9234279 DOI: 10.3389/fphar.2022.894285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Methyl gallate (MG), a polyphenolic compound found in plants, is widely used in traditional Chinese medicine. MG is known to alleviate several cancer symptoms. However, most studies that have reported the antitumor effects of MG have done so at the cellular level, and the inhibitory effect and therapeutic mechanism of MG in hepatocellular carcinoma (HCC) have not been extensively explored in vivo. We aimed to understand the therapeutic mechanism of MG in HCC in vitro and in vivo. MTT and colony formation assays were used to determine the impact of MG on the proliferation of a human HCC cell line, BEL-7402; wound healing and transwell assays were used to quantify the migration and invasion of HCC cells. Western blotting was used to quantify the expression of the AMPK/NF-κB signaling pathway proteins. In vivo tumor growth was measured in a xenograft tumor nude mouse model treated with MG, and hematoxylin-eosin staining and immunohistochemistry (IHC) were used to visualize the histological changes in the tumor tissue. We found that MG showed anti-proliferative effects both in vitro and in vivo. MG downregulated the protein expression of AMPK, NF-κB, p-NF-κB, and vimentin and upregulated the expression of E-cadherin in a dose-dependent manner. Additionally, MG inhibited the migration and invasion of HCC cells by decreasing MMP9 and MMP2 expression and increasing TIMP-2 expression. These were consistent with the results of IHC in vivo. MG inhibited the proliferation, migration, and invasion of HCC cells. This effect potentially involves the regulation of the AMPK/NF-κB pathway, which in turn impacts epithelial-mesenchymal transition and MMP expression.
Collapse
Affiliation(s)
- Huaguo Liang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zexin Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ruihui Yang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingsong Huang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongmei Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanting Chen
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Peng Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shijie Wei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongxia Yang
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongli Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
4
|
AIMP2-DX2 provides therapeutic interface to control KRAS-driven tumorigenesis. Nat Commun 2022; 13:2572. [PMID: 35546148 PMCID: PMC9095880 DOI: 10.1038/s41467-022-30149-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/14/2022] [Indexed: 12/11/2022] Open
Abstract
Recent development of the chemical inhibitors specific to oncogenic KRAS (Kirsten Rat Sarcoma 2 Viral Oncogene Homolog) mutants revives much interest to control KRAS-driven cancers. Here, we report that AIMP2-DX2, a variant of the tumor suppressor AIMP2 (aminoacyl-tRNA synthetase-interacting multi-functional protein 2), acts as a cancer-specific regulator of KRAS stability, augmenting KRAS-driven tumorigenesis. AIMP2-DX2 specifically binds to the hypervariable region and G-domain of KRAS in the cytosol prior to farnesylation. Then, AIMP2-DX2 competitively blocks the access of Smurf2 (SMAD Ubiquitination Regulatory Factor 2) to KRAS, thus preventing ubiquitin-mediated degradation. Moreover, AIMP2-DX2 levels are positively correlated with KRAS levels in colon and lung cancer cell lines and tissues. We also identified a small molecule that specifically bound to the KRAS-binding region of AIMP2-DX2 and inhibited the interaction between these two factors. Treatment with this compound reduces the cellular levels of KRAS, leading to the suppression of KRAS-dependent cancer cell growth in vitro and in vivo. These results suggest the interface of AIMP2-DX2 and KRAS as a route to control KRAS-driven cancers. Direct targeting of oncogenic KRAS activity is a challenge. Here the authors report that a splice variant of AIMP2, AIMP2-DX2, enhances KRAS stability by blocking ubiquitin-mediated degradation of KRAS via the E3 ligase, Smurf2, and identify a chemical that can hinder AIMP2-DX2 from interacting with KRAS.
Collapse
|
5
|
Silva B, Mantha OL, Schor J, Pascual A, Plaçais PY, Pavlowsky A, Preat T. Glia fuel neurons with locally synthesized ketone bodies to sustain memory under starvation. Nat Metab 2022; 4:213-224. [PMID: 35177854 PMCID: PMC8885408 DOI: 10.1038/s42255-022-00528-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/07/2022] [Indexed: 11/15/2022]
Abstract
During starvation, mammalian brains can adapt their metabolism, switching from glucose to alternative peripheral fuel sources. In the Drosophila starved brain, memory formation is subject to adaptative plasticity, but whether this adaptive plasticity relies on metabolic adaptation remains unclear. Here we show that during starvation, neurons of the fly olfactory memory centre import and use ketone bodies (KBs) as an energy substrate to sustain aversive memory formation. We identify local providers within the brain, the cortex glia, that use their own lipid store to synthesize KBs before exporting them to neurons via monocarboxylate transporters. Finally, we show that the master energy sensor AMP-activated protein kinase regulates both lipid mobilization and KB export in cortex glia. Our data provide a general schema of the metabolic interactions within the brain to support memory when glucose is scarce.
Collapse
Affiliation(s)
- Bryon Silva
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Olivier L Mantha
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
- INSERM UMR1069 'Nutrition, Croissance et Cancer', Tours, France
| | - Johann Schor
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Alice Pavlowsky
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|