6
|
Sinha N, Duncan JS, Diehl B, Chowdhury FA, de Tisi J, Miserocchi A, McEvoy AW, Davis KA, Vos SB, Winston GP, Wang Y, Taylor PN. Intracranial EEG Structure-Function Coupling and Seizure Outcomes After Epilepsy Surgery. Neurology 2023; 101:e1293-e1306. [PMID: 37652703 PMCID: PMC10558161 DOI: 10.1212/wnl.0000000000207661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Surgery is an effective treatment for drug-resistant epilepsy, which modifies the brain's structure and networks to regulate seizure activity. Our objective was to examine the relationship between brain structure and function to determine the extent to which this relationship affects the success of the surgery in controlling seizures. We hypothesized that a stronger association between brain structure and function would lead to improved seizure control after surgery. METHODS We constructed functional and structural brain networks in patients with drug-resistant focal epilepsy by using presurgery functional data from intracranial EEG (iEEG) recordings, presurgery and postsurgery structural data from T1-weighted MRI, and presurgery diffusion-weighted MRI. We quantified the relationship (coupling) between structural and functional connectivity by using the Spearman rank correlation and analyzed this structure-function coupling at 2 spatial scales: (1) global iEEG network level and (2) individual iEEG electrode contacts using virtual surgeries. We retrospectively predicted postoperative seizure freedom by incorporating the structure-function connectivity coupling metrics and routine clinical variables into a cross-validated predictive model. RESULTS We conducted a retrospective analysis on data from 39 patients who met our inclusion criteria. Brain areas implanted with iEEG electrodes had stronger structure-function coupling in seizure-free patients compared with those with seizure recurrence (p = 0.002, d = 0.76, area under the receiver operating characteristic curve [AUC] = 0.78 [95% CI 0.62-0.93]). Virtual surgeries on brain areas that resulted in stronger structure-function coupling of the remaining network were associated with seizure-free outcomes (p = 0.007, d = 0.96, AUC = 0.73 [95% CI 0.58-0.89]). The combination of global and local structure-function coupling measures accurately predicted seizure outcomes with a cross-validated AUC of 0.81 (95% CI 0.67-0.94). These measures were complementary to other clinical variables and, when included for prediction, resulted in a cross-validated AUC of 0.91 (95% CI 0.82-1.0), accuracy of 92%, sensitivity of 93%, and specificity of 91%. DISCUSSION Our study showed that the strength of structure-function connectivity coupling may play a crucial role in determining the success of epilepsy surgery. By quantitatively incorporating structure-function coupling measures and standard-of-care clinical variables into presurgical evaluations, we may be able to better localize epileptogenic tissue and select patients for epilepsy surgery. CLASSIFICATION OF EVIDENCE This is a Class IV retrospective case series showing that structure-function mapping may help determine the outcome from surgical resection for treatment-resistant focal epilepsy.
Collapse
Affiliation(s)
- Nishant Sinha
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada.
| | - John S Duncan
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Beate Diehl
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Fahmida A Chowdhury
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Jane de Tisi
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Anna Miserocchi
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Andrew William McEvoy
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Kathryn A Davis
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Sjoerd B Vos
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Gavin P Winston
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Yujiang Wang
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| | - Peter Neal Taylor
- From the Department of Neurology (N.S., K.A.D.), Penn Epilepsy Center, Perelman School of Medicine, and Center for Neuroengineering and Therapeutics (N.S., K.A.D.), University of Pennsylvania, Philadelphia; Translational and Clinical Research Institute (Y.W., P.N.T.), Faculty of Medical Sciences, and Computational Neuroscience, Neurology, and Psychiatry Lab (Y.W., P.N.T.), ICOS Group, School of Computing, Newcastle University; Department of Epilepsy (J.S.D., B.D., F.A.C., J.d.T., A.M., A.W.M., G.P.W., Y.W., P.N.T.), UCL Queen Square Institute of Neurology; UCL Centre for Medical Image Computing (S.B.V.); Neuroradiological Academic Unit (S.B.V.), UCL Queen Square Institute of Neurology, London; MRI Unit (J.S.D., G.P.W.), Chalfont Centre for Epilepsy, Bucks, United Kingdom; Centre for Microscopy, Characterisation, and Analysis (S.B.V.), The University of Western Australia, Nedlands; and Division of Neurology (G.P.W.), Department of Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
7
|
Revell AY, Silva AB, Arnold TC, Stein JM, Das SR, Shinohara RT, Bassett DS, Litt B, Davis KA. A framework For brain atlases: Lessons from seizure dynamics. Neuroimage 2022; 254:118986. [PMID: 35339683 PMCID: PMC9342687 DOI: 10.1016/j.neuroimage.2022.118986] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 01/03/2023] Open
Abstract
Brain maps, or atlases, are essential tools for studying brain function and organization. The abundance of available atlases used across the neuroscience literature, however, creates an implicit challenge that may alter the hypotheses and predictions we make about neurological function and pathophysiology. Here, we demonstrate how parcellation scale, shape, anatomical coverage, and other atlas features may impact our prediction of the brain's function from its underlying structure. We show how network topology, structure-function correlation (SFC), and the power to test specific hypotheses about epilepsy pathophysiology may change as a result of atlas choice and atlas features. Through the lens of our disease system, we propose a general framework and algorithm for atlas selection. This framework aims to maximize the descriptive, explanatory, and predictive validity of an atlas. Broadly, our framework strives to provide empirical guidance to neuroscience research utilizing the various atlases published over the last century.
Collapse
Affiliation(s)
- Andrew Y Revell
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Alexander B Silva
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Medical Scientist Training Program, University of California, San Francisco, CA 94143, USA
| | - T Campbell Arnold
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel M Stein
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu R Das
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Statistics in Imaging and Visualization Endeavor, Perelman school of Medicine, University of Pennsylvania, PA 19104, USA
| | - Dani S Bassett
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA; Department of Electrical and Systems Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Brian Litt
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|