1
|
Scherberich J, Bauer L, Huber-Liu N, Krombach GA, Metzger R, Kluth D, Ginzel M. Microcomputed Tomography in the Adriamycin Rat Model of Malformations-Preliminary Results. Biomolecules 2025; 15:569. [PMID: 40305302 PMCID: PMC12025215 DOI: 10.3390/biom15040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Adriamycin, a chemotherapy drug, was first shown to induce malformations in rat embryos in 1978, with subsequent studies focusing on the development of esophageal atresia. Recently, we examined early tracheal development in healthy rat embryos using microcomputed tomography, which is useful for visualizing the morphology during embryonic development. Here, we use this technique to show malformations in rat embryos after Adriamycin treatment in the form of an atlas. METHODS Pregnant rats received Adriamycin [1.75 mg/kg body weight] intraperitoneally once daily from day 7 to 9. The embryos were harvested between the 16th and 21st embryonic day, fixed in Bouin's solution and subsequently dried in a critical point dryer. The dried embryos were scanned using microcomputed tomography. Existing datasets of normal embryos served as controls. RESULTS The embryos affected by Adriamycin showed a broad spectrum of malformations that have only partially been described in previous publications. Our preliminary data show a large number of malformations that can be attributed to the VACTERL association (Vertebral, Anorectal, Cardiac, Tracheoesophageal, Renal, and Limb anomalies). In addition, cardiovascular malformations have been observed that may directly affect the esophageal/tracheal morphology. CONCLUSION Micro CT imaging used in Adriamycin-affected embryos shows the full spectrum of induced malformations.
Collapse
Affiliation(s)
- Jan Scherberich
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, 35392 Giessen, Germany; (J.S.); (G.A.K.)
| | - Leopold Bauer
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, 5020 Salzburg, Austria; (L.B.); (N.H.-L.); (R.M.)
| | - Nana Huber-Liu
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, 5020 Salzburg, Austria; (L.B.); (N.H.-L.); (R.M.)
| | - Gabriele Anja Krombach
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, 35392 Giessen, Germany; (J.S.); (G.A.K.)
| | - Roman Metzger
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, 5020 Salzburg, Austria; (L.B.); (N.H.-L.); (R.M.)
| | - Dietrich Kluth
- Department of Pediatric Surgery, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Marco Ginzel
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, 5020 Salzburg, Austria; (L.B.); (N.H.-L.); (R.M.)
| |
Collapse
|
2
|
Takakuwa T, Kakeya M, Ishida N, Kanahashi T, Fujii S, Männer J, Yamada S. Superior Mesenteric Artery during Intestinal Loop Formation and Its Positional Changes from the Extracoelom to the Abdominal Cavity. Cells Tissues Organs 2025:1-12. [PMID: 40199263 PMCID: PMC12101812 DOI: 10.1159/000545751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 04/02/2025] [Indexed: 04/10/2025] Open
Abstract
INTRODUCTION Features of the superior mesenteric artery (SMA) and its intestinal branches during the embryonic and early fetal periods have not been fully described. We aimed to comprehensively elucidate the characteristics of intestinal branch artery formation in the SMA. METHODS Serial tissue sections of seven early fetal specimens belonging to the Blechschmidt collection were digitalized and used for segmentation and reconstruction of the intestinal loop, SMA trunk, intestinal branch arteries, and mesentery for further analysis. RESULTS The intestinal branch arteries fed the intestinal tract from the oral side to the anal side, according to the order of their origin from the root to the periphery of the SMA trunk. SMA and intestinal branches were not as strongly conserved in their morphology as indicated in previous research but varied between specimens. Most intestinal branch arteries exhibited frequent branching with small intervals at the periphery, whereas the proximal branch exhibited few branches. Only a few peripheral branches made contact with the neighboring intestinal branch arteries. The fetal intestinal branch artery architecture differed greatly from that of adults. There were considerable inter- and intra-specimen variations in the intestinal tract length per feeding intestinal branch artery. The SMA branching arteries did not always supply each tertiary loop individually, and not every loop is connected to one branching artery. CONCLUSION This study elucidates the characteristics of forming the SMA intestinal branch arteries. Specifically, the findings suggest that the SMA is similar to other arteries in that its branches show a level of variability in feeding tissues.
Collapse
Affiliation(s)
- Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Kakeya
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nanase Ishida
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toru Kanahashi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sena Fujii
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jörg Männer
- Institute of Anatomy and Cell Biology, UMG, Georg-August-University of Göttingen, Göttingen, Germany
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Varela MF, Oria M, Poling HM, Lopriore E, Peiro JL. Development and Validation of a Minimally Invasive Transuterine Experimental Model of Gastroschisis. J Pediatr Surg 2025; 60:162163. [PMID: 39823694 DOI: 10.1016/j.jpedsurg.2025.162163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/13/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION Perinatal management of gastroschisis remains a subject of substantial research. Current models, including teratogenic, genetic, and surgical approaches, often fail to accurately replicate gastroschisis, exhibiting limitations such as inaccurate phenotyping, low success rates, high mortality, lack of scientific validation, and significant technical challenges. Refined disease models are essential for improving the understanding of GS. This study seeks to develop and validate a minimally invasive transuterine experimental model of GS that overcomes these existing constraints to advance gastroschisis research. METHODS A gastroschisis model was surgically created in rat fetuses at E17 (n = 51 fetuses from n = 13 dams). Intestines were harvested at term and divided into herniated gastroschisis (GS-H), intra-abdominal gastroschisis (GS-I), and control (Co) groups. Morphometric analysis, histopathological examination, immunohistochemistry for interstitial cells of Cajal (ICC), double immunofluorescence for ICC and mast cells, TUNEL assay for apoptotic cells, and multiplex cytokine assay were performed to assess intestinal architecture, inflammation, ICC network, apoptosis, and cytokine levels across studied groups. RESULTS Histology from GS intestines revealed subchronic inflammation, peel formation, and architectural disruption. Herniated intestines exhibited a significantly increased weight/length ratio and thicker outer layers (p < 0.001) compared with control intestines. Herniated intestines had elevated inflammatory cytokine levels (GS-H vs GS-I and Co, p < 0.05 for G-CSF, GM-CSF, IL-12p70, IL-1beta) and increased apoptotic activity. CONCLUSIONS We developed and validated a new surgical model of GS that offers improved survival and feasibility. The key morphological changes and molecular markers observed in this experimental model resemble human gastroschisis.
Collapse
Affiliation(s)
- Maria Florencia Varela
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Neonatology, Department of Pediatrics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Marc Oria
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Holly Marie Poling
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Enrico Lopriore
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Jose Luis Peiro
- The Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), 3333 Burnet Avenue, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA.
| |
Collapse
|
4
|
Ishida N, Ueda Y, Kanahashi T, Matsubayashi J, Imai H, Yamada S, Takakuwa T. Hierarchical loop formation in human midgut during physiological umbilical herniation. J Anat 2025. [PMID: 39887988 DOI: 10.1111/joa.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
This study aimed to describe the morphological alterations that occur in the midgut and mesentery over time during the herniated phase of the midgut. The primary loop, a single hairpin-shaped loop, becomes recognizable at Carnegie stage (CS) 16. This loop projects toward the umbilical cord and subsequently gives rise to four secondary loops in the midgut of human embryos. As development advances, the segments corresponding to each secondary loop further develop into an increasing number of loops, referred to as tertiary loops. The mesenteric leaves and the narrowing parts, which serve as the borders of the secondary loops, remain identifiable throughout the subsequent stages of development. A total of 47 human embryos between CS16 and CS23 and two fetuses in the physiological umbilical herniated stage were selected for high-resolution magnetic resonance imaging acquisition. Specimens were obtained from the Congenital Anomaly Research Center of Kyoto University. Serial tissue sections obtained from four embryos were subjected to histological observation. The midgut and mesentery were reconstructed in three dimensions, and the resulting morphological changes were observed and analyzed. Formation of the primary loop was observed in all specimens between CS16 and CS18. Secondary loops in the midgut were initially discerned at CS19 in segments 2 and 4 (S2 and S4). The border between S3 and S4 was identified at the apex of the midgut hernia, where traces of the vitelline artery and duct enter the mesentery. At CS21 and later stages of development, the presence of three borders at the exact location delineated by mesenteric narrowing was consistently observed, which resulted in the midgut being divided into four segments in all specimens. The formation of tertiary loops was initially identified at CS 21, occurring in either segment S2 or S3. By CS23, tertiary loops were observed in three segments in most specimens. Notably, the initial formation of tertiary loops in S4 occurred one CS later than in S2 or S3. Additionally, the increase in the number of folds and the length per fold in S4 was delayed compared with the number and length of folds observed in both S2 and S3. The number of loops in S1 remained constant (one secondary loop) across all specimens. Upon reaching a critical threshold length, the number of loops exhibited a marked increase, accompanied by rapid elongation in S2, S3, and S4. The number of tertiary loops increased in accordance with the crown-rump length, which exhibited a maximum of 19 tertiary loops in S2 to S4 of the midgut. These findings support the hypothesis that tertiary loops develop biomechanically through the rapid elongation of the midgut and slow growth of the mesentery. This study describes the morphological alterations occurring in the midgut and mesentery over time during the herniated phase of the midgut and provides a comprehensive understanding of the roles of genetic and biomechanical factors in loop formation.
Collapse
Affiliation(s)
- Nanase Ishida
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yui Ueda
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toru Kanahashi
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hirohiko Imai
- Department of Informatics, Graduate School of Informatics, Kyoto University, Kyoto, Japan
- Innovation Research Center for Quantum Medicine, Gifu University School of Medicine, Gifu, Japan
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Congenital Anomaly Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuya Takakuwa
- Human Health Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Li H, Zhang X, Wang X, Wu Q, Zheng W, Liu C, Wei S, Zuo X, Xiao W, Ye H, Wang W, Yang L, Zhu Y. The developmental pattern related to fatty acid uptake and oxidation in the yolk sac membrane and jejunum during embryogenesis in Muscovy duck. Poult Sci 2024; 103:103929. [PMID: 38943802 PMCID: PMC11261488 DOI: 10.1016/j.psj.2024.103929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 07/01/2024] Open
Abstract
This study aimed to investigate the developmental change of body growth and gene expression related to fatty acid uptake and oxidation in the yolk sac membrane (YSM) and jejunum during embryogenesis in Muscovy ducks. The weights of embryos and yolk sac (YS) (5 embryos per replicate, n = 6) were recorded on embryonic days (E)16, E19, E22, E25, E28, E31, and the day of hatch (DOH). The fat and fatty acid contents in YSM, jejunal histology, and gene expression related to fatty acid metabolism in YSM and jejunum were determined in each sampling time. Among the nonlinear models, the maximum growth is estimated at 2.83 (E22.5), 2.67 (E22.1), and 2.60 (E21.3) g/d using logistic, Gompertz, and Von Bertalanffy models, respectively. The weight of YS, and ether extract-free YS as well as the amounts of fat and fatty acids in YS decreased (P < 0.05) linearly, whereas the villus height, crypt depth, villus height/crypt depth, and musculature thickness in jejunum increased (P < 0.05) linearly during embryogenesis. The mRNA expression of CD36, SLC27A4, and FABP1 related to fatty acid uptake as well as the mRNA and protein expressions of PPARα and CPT1 related to fatty acid oxidation increased in a quadratic manner (P < 0.05) in both YS and jejunum, and the maximum values were achieved during E25 to E28. In conclusion, the maximum growth rate of Muscovy duck embryos was estimated at 2.60 to 2.83 g/d on E21.3 to E23.5, while the accumulations of lipid and fatty acid in YS were decreased in association with the increased absorptive area of morphological structures in jejunum. The gene and protein expression involved in fatty acid metabolism displayed a similar enhancement pattern between YSM and jejunum during E25 to E28, suggesting that fatty acid utilization could be strengthened to meet the energy demand for embryonic development.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Xiufen Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Xiaowen Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Qilin Wu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Wenxuan Zheng
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | - Shi Wei
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 527400, China
| | | | - Hui Ye
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Wence Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Lin Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China
| | - Yongwen Zhu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000 China; Woman Biotechnology Co, Ltd, Guangzhou, 510000 China.
| |
Collapse
|
6
|
Testicular descent revisited: a micro-computed tomography study in fetal rats. Pediatr Surg Int 2023; 39:149. [PMID: 36882585 DOI: 10.1007/s00383-023-05427-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 03/09/2023]
Abstract
PURPOSE There is a long history of research dealing with the embryology of the testicular descent. However, important aspects like the role of the gubernaculum and the development of the processus vaginalis peritonei are not understood. Micro-computed tomography (µCT) is an established tool for anatomical studies in rodents. Our study applied µCT imaging to visualize the testicular descent in rats and focused on the role of the gubernacular bulb and the development of the processus vaginalis peritonei. METHODS Rats from embryonic day 15 (ED15) to ED21 and newborns (N0) were fixed and dried using the "critical point" technique. We ran a SkyScan® µCT system and scans were analyzed for gender-specific differentiation of the genital ridge and used for 3D visualization of relevant anatomic structures. RESULTS µCT imaging confirmed the intraperitoneal location of the testicles from ED15 to N0. The components of the inner genital moved closer together while the intestinal volume expanded. The gubernacular bulb seemed to be involved in the formation of the processus vaginalis peritonei. CONCLUSION Here, we utilized µCT imaging to visualize the testicular descent in the rat. Imaging provides new morphologic aspects on the development of the processus vaginalis peritonei.
Collapse
|
7
|
Ginzel M, Huber N, Bauer L, Kluth D, Metzger R. Development of the foregut and the formation of the trachea and esophagus in rat embryos. A symphony of confusion. Front Cell Dev Biol 2023; 11:1092753. [PMID: 36824366 PMCID: PMC9941168 DOI: 10.3389/fcell.2023.1092753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction: During embryonic development, the trachea emerges from an area of the foregut, which is often referred to as "anterior" or "common" foregut tube or simply foregut. To explain this process of differentiation, four competing models exist to date. The outgrowth and watershed models propose a foregut that remains constant in length. In the outgrowth model, the trachea buds off and elongates from the foregut, while in the watershed model, a mesenchymal wedge splits the growing foregut into the trachea and esophagus. In contrast, the septation model proposes a cranial splitting and thus a shortening of the "common" foregut tube into the trachea and esophagus by an emerging septum. Finally, the splitting and extension model describes an interaction of cranial splitting of the foregut and simultaneous caudal tracheal and esophageal growth. Methods: Here we examine the development of the undifferentiated foregut by micro computed tomography, which allows precise measurements. Results: Our results show that this area of the foregut transforms into the larynx, a process, which is independent from tracheal and esophageal development. Discussion: These observations are only consistent with the outgrowth model.
Collapse
Affiliation(s)
- Marco Ginzel
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, Salzburg, Austria,*Correspondence: Marco Ginzel,
| | - Nana Huber
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, Salzburg, Austria
| | - Leopold Bauer
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, Salzburg, Austria
| | - Dietrich Kluth
- Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Roman Metzger
- Department of Pediatric and Adolescent Surgery, Paracelsus Medical University Hospital, Salzburg, Austria
| |
Collapse
|
8
|
Wille S, Peukert N, Haak R, Riedel J, Mayer S, Kluth D, Lacher M, Gosemann JH, Markel M. Development of the Urinary Tract in Fetal Rats: A Micro-CT Study. Eur J Pediatr Surg 2023; 33:53-60. [PMID: 36395789 DOI: 10.1055/s-0042-1758681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Micro-computed tomography (micro-CT) is an established tool to study fetal development in rodents. This study aimed to use micro-CT imaging to visualize the development of the urinary tract in fetal rats. MATERIALS AND METHODS Fetal rats from embryonic day (ED) 15, ED17, ED19, ED21, and N0 (newborn) (n = 6 per group; 3 males) were fixed and desiccated using the "critical point" technique. We utilized the micro-CT system (SkyScan) and analyzed the resulting scans with CTAn, DataViewer, and ImageJ to visualize the morphology and quantify the volumes of kidney, bladder, adrenal gland, as well as length of the ureter. RESULTS High-resolution micro-CT showed continuous growth of both kidneys from ED15 to N0, with the highest increase between ED19 and ED21. The length of the ureter increased from ED15 to ED21 and remained stable until birth. The volume of the bladder steadily increased from ED15 to N0.In females, a statistically higher volume of the adrenal gland on ED21 was observed, whereas no sex-specific differences were seen for kidney, ureter, and bladder development. CONCLUSION Micro-CT depicts an excellent tool to study urinary tract development in the fetal and neonatal rat. It enables the metric quantification of longitudinal anatomic changes in high definition without previous destructive tissue preparation. The present study revealed sex-specific differences of the adrenal gland development and provides comprehensive data for the understanding of fetal urinary tract development, inspiring future research on congenital urological malformations.
Collapse
Affiliation(s)
- Stephanie Wille
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany.,Department of Interdisciplinary Medical Intensive Care, University of Leipzig, Leipzig, Germany
| | - Nicole Peukert
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Rainer Haak
- Department of Cariology, Endodontology, and Periodontology, University of Leipzig, Leipzig, Germany
| | - Jan Riedel
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Steffi Mayer
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Dietrich Kluth
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| | | | - Moritz Markel
- Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany
| |
Collapse
|
9
|
Jin ZW, Kim JH, Yamamoto M, Murakami G, Abe SI, Rodríguez-Vázquez JF. Topographical relationships of the yolk sac remnant and vitelline vessels with the midgut loop in the extra-embryonic coelom of human embryos. Anat Cell Biol 2022; 55:356-366. [PMID: 36168780 PMCID: PMC9519759 DOI: 10.5115/acb.22.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 12/05/2022] Open
Abstract
The yolk sac is supplied by the vitelline artery and vein (VA, VV), which run through the yolk stalk in combination with the omphaloenteric duct. Moreover, the VV takes a free posterior course outside the midgut mesentery containing the secondarily-developed superior mesenteric vein (SMV). However, the regression process of these structures has not been demonstrated photographically. The present study evaluated serial histological sections from 20 embryos of stages 15–19 or crown-rump length (CRL) 7.5–20 mm. All specimens carried the SMV as sequential tissue slits. However, an omphaloenteric duct with epithelia continuous with the midgut loop was not observed. In smaller embryos (CRL <13 mm) the VA extended distally or anteriorly from the midgut apex in the extra-embryonic coelom, whereas in larger embryos (CRL 16–20 mm) the artery was absent from the distal side of the apex. The entire course or part of the VV outside the mesentery was always seen, but four larger embryos lacked the venous terminal near the duodenum. A vacuole-like remnant of the yolk sac was present in all smaller embryos (CRL <10 mm), but was absent from 7 of the 11 larger embryos. The size of the remnant was equal to the thickness of the VA or VV, with the remnant being sandwiched between the VA and VV. Moreover, the regressing yolk sac often communicated with or opened to the VV. Consequently, the yolk sac regressed first, followed by the regression of the VA until 6 weeks. The yolk stalk was clearly observed until 5 weeks.
Collapse
Affiliation(s)
- Zhe-Wu Jin
- Department of Anatomy, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Ji Hyun Kim
- Department of Anatomy, Jeonbuk National University Medical School, Jeonju, Korea
| | | | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan.,Division of Internal Medicine, Cupid Clinic, Iwamizawa, Japan
| | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
10
|
Boripun R, Kulnanan P, Pangprasit N, Scholfield CN, Sumretprasong J. Bovine omphalocele: errors in embryonic development, veterinarian importance, and the way forward. Vet Res Commun 2022; 46:999-1009. [DOI: 10.1007/s11259-022-09994-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
|
11
|
Kakeya M, Matsubayashi J, Kanahashi T, Männer J, Yamada S, Takakuwa T. The return process of physiological umbilical herniation in human fetuses: The possible role of the vascular tree and umbilical ring. J Anat 2022; 241:846-859. [PMID: 35758553 PMCID: PMC9358769 DOI: 10.1111/joa.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The human intestine elongates during the early fetal period, herniates into the extraembryonic coelom (EC), and subsequently returns to the abdominal cavity (AC). The process by which the intestinal loop returns to the abdomen remains unclear. This study aimed to document positional changes in the intestinal tract with the superior mesenteric artery (SMA) and branches in 3D to elucidate the intestinal loop return process (transition phase). Serial histological cross-sections from human fetuses (crown-rump length [CRL] range: 30-50 mm) in the herniation (n = 1), transition (n = 7), and return (n = 2) phases were selected from the Blechschmidt Collection. The distribution of the SMA trunk and all intestinal and sister branches entering the intestines was visualized so that positional changes in branches were continuous from the herniation to return phases. Positional changes in SMA branches proceeded in an orderly and structured manner; this is essential for continuous blood supply via the SMA to the intestine during transition and for safe intestinal return. Changes in the SMA distribution proceeded prior to the detection of initiation of intestinal tract return, which might start earlier and last much longer than our consensus (i.e., that the return of the herniated intestine begins when the CRL is approximately 40 mm and ends within a short time). In the cross-section of the umbilical ring in the herniation and transition phases, one proximal limb and one distal limb were observed with SMA intestinal branches, which were fully packed in the umbilical ring. The SMA branches were aligned from inferior to superior along the SMA main trunk. In the herniation phase, the distribution of 3rd-13th branches aligned from proximal inferior medial to distal superior left with a slight spiral in the EC, the tips of which suggested an orderly running course of the small intestine. In the transition phase, SMA branches running across the umbilical ring that fed the small intestine were observed, suggesting that the intestine was uncoiled and ran across the umbilical ring almost vertically. The estimated curvature value supported the phenomenon of uncoiling at the umbilical ring; the value at the umbilical ring was lesser than that in the AC and EC. During the transition phase, the proximal and distal limbs transversely ran side by side in the AC, umbilical ring, limbs on the cranial side, and mesentery on the caudal side. The SMA trunk and its branches ran in parallel, cranially to caudally aligned in the mesentery. This layout of the umbilical ring was maintained during the transition phase. In the return phase, the SMA trunk was gently curved from the upper left to the lower right of the AC; around 12 branches spread with a winding staircase appearance. The intestinal tract reached its definitive position immediately after all tissues crossed the umbilical ring and released any restriction. Each SMA branch and the corresponding region of the intestinal tract form a unit and change their position, though the conformation may change within each unit when running across the umbilical ring. We suggest that the slide-stack model requires revision.
Collapse
Affiliation(s)
- Maki Kakeya
- Human Health Science, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Jun Matsubayashi
- Center for Clinical Research and Advanced MedicineShiga University of Medical ScienceShigaJapan
| | - Toru Kanahashi
- Human Health Science, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Jörg Männer
- Institute of Anatomy and Embryology, UMGGeorg‐August‐University of GöttingenGöttingenGermany
| | - Shigehito Yamada
- Human Health Science, Graduate School of MedicineKyoto UniversityKyotoJapan
- Congenital Anomaly Research Center, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Tetsuya Takakuwa
- Human Health Science, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|