1
|
Bai R, Xie J, Zhang Y, Sun L, Zhang Z, Wang L, Hu J. Combination with isopentenyl diphosphate isomerase gene affects expression of two linalool/nerolidol synthases isoforms from Lingzhi. Gene 2025; 951:149394. [PMID: 40049424 DOI: 10.1016/j.gene.2025.149394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
GlSTS21 and GsSTS41, derived from Ganoderma lucidum (Leyss. ex Fr.) Karst. and G. sinense Zhao, Xu et Zhang, respectively, have been identified as linalool/nerolidol synthases. Although both enzymes catalyze the synthesis of linalool and nerolidol, they exhibit distinct sequences and conserved structural domains, as well as variations in their secondary and tertiary structures, and differences in the location and number of substrate binding sites. When subjected to identical modification methods, GlSTS21 and GsSTS41 demonstrated divergent production trends. Specifically, GlSTS21 achieved the highest production of nerolidol when constructed in the sequence of pET28a-T7-GlSTS21-T7-E. coli isopentenyl diphosphate isomerase (IDI). Conversely, the highest production of linalool by GlSTS21 occurred when it was arranged in the sequence of pET28a-T7-GlSTS21-T7-E. coli IDI. For GsSTS41, the optimal production of both linalool and nerolidol was attained when it was ligated in the sequence of pET28a-T7-E. coli IDI-T7 -GsSTS41. These findings provide valuable insights for future efforts aimed at optimizing product-focused selection in industrial production processes.
Collapse
Affiliation(s)
- Ronglu Bai
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyi Xie
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuna Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - LinLin Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ziwei Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lizhi Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jing Hu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Tominaga M, Kawakami K, Ogawa H, Nakamura T, Kondo A, Ishii J. Production of borneol, camphor, and bornyl acetate using engineered Saccharomyces cerevisiae. Metab Eng Commun 2025; 20:e00259. [PMID: 40242661 PMCID: PMC12002889 DOI: 10.1016/j.mec.2025.e00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/13/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Microbial production of bicyclic monoterpenes is of great interest because their production primarily utilizes non-sustainable resources. Here, we report an engineered Saccharomyces cerevisiae yeast that produces bicyclic monoterpenes, including borneol, camphor, and bornyl acetate. The engineered yeast expresses a bornyl pyrophosphatase synthase from Salvia officinalis fused with mutated farnesyl pyrophosphate synthase from S. cerevisiae and two mevalonate pathway enzymes (an acetoacetyl-CoA thiolase/hydroxymethylglutaryl-CoA [HMG-CoA] reductase and an HMG-CoA synthase) from Enterococcus faecalis. The yeast produced up to 23.0 mg/L of borneol in shake-flask fermentation. By additionally expressing borneol dehydrogenase from Pseudomonas sp. TCU-HL1 or bornyl acetyltransferase from Wurfbainia villosa, the engineered yeast produced 23.5 mg/L of camphor and 21.1 mg/L of bornyl acetate, respectively. This is the first report of heterologous production of camphor and bornyl acetate.
Collapse
Affiliation(s)
- Masahiro Tominaga
- Engineering Biology Research Center, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
| | - Kazuma Kawakami
- Graduate School of Science, Technology and Innovation, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
| | - Hiro Ogawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
| | - Tomomi Nakamura
- Engineering Biology Research Center, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
| | - Akihiko Kondo
- Engineering Biology Research Center, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
- Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1–7–22 Suehiro, Tsurumi, Yokohama, 230–0045, Japan
| | - Jun Ishii
- Engineering Biology Research Center, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
- Department of Chemical Science and Engineering, Faculty of Engineering, Kobe University, 1–1 Rokkodai, Nada, Kobe, 657–8501, Japan
| |
Collapse
|
3
|
Wang X, Zhang X, Zhang J, Zhou Y, Wang F, Wang Z, Li X. Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. Crit Rev Biotechnol 2025; 45:727-742. [PMID: 39266251 DOI: 10.1080/07388551.2024.2391881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
T R, Lin F, Chen X, Zhang C. Unravelling the aromatic symphony: redirecting bifunctional mushroom synthases towards linalool monofunctionality. ADVANCED BIOTECHNOLOGY 2025; 3:3. [PMID: 39883255 PMCID: PMC11740858 DOI: 10.1007/s44307-024-00056-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/31/2025]
Abstract
Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively. This bifunctionality can lead to undesired byproducts in synthetic biology applications. To enhance enzyme specificity and create monofunctional linalool synthases, we modified amino acids in the loop between helices C and D of four bifunctional mushroom LNSs. Through these modifications, we successfully shifted the substrate preference of two LNSs (ApLNS from Agrocybe pediades and HsLNS from Hypholoma sublateritium) from FPP towards GPP. Although complete monofunctionality was not achieved, we significantly increased linalool yield by 13 times while minimizing nerolidol production to 1% of the wildtype HsLNS. Docking simulations revealed a substantial reduction in the FPP binding score compared to that of the wildtype. Molecular dynamics simulations suggested that Tyr300 in the apo HsLNS mutant has a greater tendency to adopt an inward orientation. Together with Met77, the inward-facing Tyr300 creates a steric barrier that prevents the longer FPP molecule from entering the substrate binding pocket, thereby greatly reducing its activity towards FPP. This study demonstrates the potential of enzyme engineering to design substrate-specific terpene synthases, which is a challenging task and few successful examples are available. The insights gained can inform future enzyme design efforts, including the development of artificial intelligence models.
Collapse
Affiliation(s)
- Rehka T
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Fu Lin
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| |
Collapse
|
5
|
Zeng H, Zeng J, Meng B, Peng J, Rao L. Identification and Characterization of a Fungal Monoterpene Synthase Responsible for the Biosynthesis of Geraniol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24530-24538. [PMID: 39449585 DOI: 10.1021/acs.jafc.4c06818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Geraniol, an acyclic monoterpenoid of substantial value extracted from the essential oils of various aromatic plants, holds significant commercial and industrial importance in the realms of food, cosmetics, medicine, and bioenergy. Geraniol synthase, which is responsible for geraniol production, has been identified in only several plant species to date. Here, we present the first cloning and characterization of a geraniol synthase (PgfTPS) from Penicillium griseofulvum. This enzyme demonstrates pronounced specificity in catalyzing the conversion of geranyl diphosphate into geraniol. Moreover, through protein modeling and site-directed mutagenesis, we have identified key active-site residues crucial for the catalytic function of PgfTPS. Finally, we utilized engineered Saccharomyces cerevisiae as a host for PgfTPS expression to facilitate geraniol production. Our findings not only advance the development of efficient biocatalysts for geraniol generation but also establish a fundamental basis for further exploration into fungal monoterpene biosynthesis.
Collapse
Affiliation(s)
- Haichun Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jiatong Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Beilin Meng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Jianmei Peng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Li Rao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| |
Collapse
|
6
|
Hoberg N, Harms K, Surup F, Rühl M. Bifunctional Sesquiterpene/Diterpene Synthase Agr2 from Cyclocybe aegerita Gives Rise to the Novel Diterpene Cyclocybene. ACS Chem Biol 2024; 19:2144-2151. [PMID: 39293797 PMCID: PMC11495317 DOI: 10.1021/acschembio.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Cyclocybe aegerita is a model mushroom belonging to the fungal phylum Basidiomycota. Among others, C. aegerita is known for its diverse terpenome, containing various volatile and nonvolatile terpenes and terpenoids. Here, we deepen the knowledge on their biosynthetic pathways by studying the terpene synthase Agr2 in detail. In contrast to previous studies, the heterologous production of Agr2 in the agaric host Coprinopsis cinerea revealed the production of two terpenes, one of which was the already known sesquiterpene viridiflorene. The other one was a so far unknown diterpene that had to be isolated and purified by means of preparative RP-HPLC for structure elucidation. 1D- and 2D-NMR experiments revealed the compound as the novel diterpene cyclocybene, pointing to the bifunctionality of Agr2 to produce both a sesquiterpene and a diterpene.
Collapse
Affiliation(s)
- Nikolas Hoberg
- Department
of Biology and Chemistry, Justus-Liebig-University
Giessen (JLU) Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, Giessen 35392, Germany
| | - Karen Harms
- Department
Microbial Drugs and German Center for Infection Research (DZIF), partner
side Hannover − Braunschweig, Helmholtz
Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Frank Surup
- Department
Microbial Drugs and German Center for Infection Research (DZIF), partner
side Hannover − Braunschweig, Helmholtz
Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, Braunschweig 38124, Germany
| | - Martin Rühl
- Department
of Biology and Chemistry, Justus-Liebig-University
Giessen (JLU) Institute of Food Chemistry and Food Biotechnology, Heinrich-Buff-Ring 17, Giessen 35392, Germany
- Fraunhofer
Institute for Molecular Biology and Applied Ecology IME Business Area
Bioressources, Ohlebergsweg
12, Giessen 35392, Germany
| |
Collapse
|
7
|
Chen WH, Ko YZ, Chang HC, Chang CS, Hung KH, Shih HC, Ju LP, Shiao MS, Chiang YC. Comparative chemical profiling of leaf essential oils from Cinnamomum kanehirae and related species using steam distillation and solvent extraction: Implications for plant-based classification. Heliyon 2024; 10:e30628. [PMID: 38726167 PMCID: PMC11079393 DOI: 10.1016/j.heliyon.2024.e30628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/25/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Cinnamomum kanehirae Hayata, belonging to Lauraceae family, is an indigenous and endangered species of considerable economic importance in Taiwan. It plays a crucial role as the host for the economically valuable saprotrophic fungus, Taiwanofungus camphorates. However, accurate species identification poses a challenge due to the similarity in morphological features and frequent natural hybridization with closely related species. Acquiring high-quality and pure leaf oils becomes imperative for precise species identification and producing superior goods. In this study, our objective was to establish methodologies for analyzing the chemical composition of leaf essential oils and subsequently apply this knowledge to differentiate among three Cinnamomum species. Gas chromatography-mass spectrometry (GC/MS) was employed to scrutinize the chemical makeup of leaf essential oils from three closely related species: C. kanehirae, C. micranthum, and C. camphora. We utilized Steam Distillation (SD) and steam distillation-solvent extraction (SDSE) methods, with the SDSE-Hexane approach chosen for optimization, enhancing extraction efficiency and ensuring essential oil purity. Through the SDSE-Hexane method, we identified seventy-four compounds distributed across three major classes: monoterpenes hydrocarbons (0.0-7.0 %), oxygenated monoterpenes (3.8-90.9 %), sesquiterpenes hydrocarbons (0.0-28.3 %), and oxygenated sesquiterpenes (1.6-88.1 %). Our findings indicated the presence of more than one chemotype in both C. kanehirae and C. camphora, whereas no specific chemotype could be discerned in C. micranthum. Furthermore, clustering based on chemotypes allowed for the differentiation of samples from the three species. Notably, we demonstrated that the chemical compositions of grafted C. kanehirae remained largely unaffected by the rootstock. Conversely, natural hybrids between C. kanehirae and C. camphora exhibited profiles more closely aligned with C. kanehirae. The optimized extraction method and the chemotype-based classification system established in this study present valuable tools for essential oil preparation, species identification, and further exploration into the genetic variation of Cinnamomum.
Collapse
Affiliation(s)
- Wen-Hui Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Pingtung County Central Laboratory, No.272, Je-Yu Road, Pingtung, 900, Taiwan
| | - Ya-Zhu Ko
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| | - Hsiu-Chun Chang
- Pingtung County Central Laboratory, No.272, Je-Yu Road, Pingtung, 900, Taiwan
| | - Chui-Shiang Chang
- Pingtung County Central Laboratory, No.272, Je-Yu Road, Pingtung, 900, Taiwan
| | - Kuo-Hsiang Hung
- Graduate Institute of Bioresources, Pingtung University of Science and Technology, Pintung, 912, Taiwan
| | - Huie-Chuan Shih
- Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Li-Ping Ju
- Forest Rrotection Division, Taiwan Forestry Research Institute, Taipei, 100, Taiwan
| | - Meng-Shin Shiao
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, 804, Taiwan
- Department of Biomedical Science and Environment Biology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- The Multidisciplinary and Data Science Research Center(MDSRC), National Sun Yat-sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
8
|
Li R, Yao B, Zeng H. Identification and Characterization of a Nerol Synthase in Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:416-423. [PMID: 38156892 DOI: 10.1021/acs.jafc.3c07573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Nerol, a linear monoterpenoid, is naturally found in essential oils of various plants and is widely used in the fragrance, food, and cosmetic industries. Nerol synthase, essential for nerol biosynthesis, has previously been identified only in plants that use NPP as the precursor. In this study, a novel fungal nerol synthase, named PgfB, was cloned and characterized from Penicillium griseofulvum. In vitro enzymatic assays showed that PgfB could directly convert the substrate GPP into nerol. Furthermore, the successful expression of PgfB and its homologous protein in Saccharomyces cerevisiae resulted in the heterologous production of nerol. Finally, crucial amino acid residues for PgfB's catalytic activity were identified through site-directed mutagenesis. This research broadens our understanding of fungal monoterpene synthases and presents precious gene resources for the industrial production of nerol.
Collapse
Affiliation(s)
- Rumeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Bo Yao
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Haichun Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| |
Collapse
|
9
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
10
|
Chou MY, Andersen TB, Mechan Llontop ME, Beculheimer N, Sow A, Moreno N, Shade A, Hamberger B, Bonito G. Terpenes modulate bacterial and fungal growth and sorghum rhizobiome communities. Microbiol Spectr 2023; 11:e0133223. [PMID: 37772854 PMCID: PMC10580827 DOI: 10.1128/spectrum.01332-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/05/2023] [Indexed: 09/30/2023] Open
Abstract
Terpenes are among the oldest and largest class of plant-specialized bioproducts that are known to affect plant development, adaptation, and biological interactions. While their biosynthesis, evolution, and function in aboveground interactions with insects and individual microbial species are well studied, how different terpenes impact plant microbiomes belowground is much less understood. Here we designed an experiment to assess how belowground exogenous applications of monoterpenes (1,8-cineole and linalool) and a sesquiterpene (nerolidol) delivered through an artificial root system impacted its belowground bacterial and fungal microbiome. We found that the terpene applications had significant and variable impacts on bacterial and fungal communities, depending on terpene class and concentration; however, these impacts were localized to the artificial root system and the fungal rhizosphere. We complemented this experiment with pure culture bioassays on responsive bacteria and fungi isolated from the sorghum rhizobiome. Overall, higher concentrations (200 µM) of nerolidol were inhibitory to Ferrovibrium and tested Firmicutes. While fungal isolates of Penicillium and Periconia were also more inhibited by higher concentrations (200 µM) of nerolidol, Clonostachys was enhanced at this higher level and together with Humicola was inhibited by the lower concentration tested (100 µM). On the other hand, 1,8-cineole had an inhibitory effect on Orbilia at both tested concentrations but had a promotive effect at 100 µM on Penicillium and Periconia. Similarly, linalool at 100 µM had significant growth promotion in Mortierella, but an inhibitory effect for Orbilia. Together, these results highlight the variable direct effects of terpenes on single microbial isolates and demonstrate the complexity of microbe-terpene interactions in the rhizobiome. IMPORTANCE Terpenes represent one of the largest and oldest classes of plant-specialized metabolism, but their role in the belowground microbiome is poorly understood. Here, we used a "rhizobox" mesocosm experimental set-up to supply different concentrations and classes of terpenes into the soil compartment with growing sorghum for 1 month to assess how these terpenes affect sorghum bacterial and fungal rhizobiome communities. Changes in bacterial and fungal communities between treatments belowground were characterized, followed by bioassays screening on bacterial and fungal isolates from the sorghum rhizosphere against terpenes to validate direct microbial responses. We found that microbial growth stimulatory and inhibitory effects were localized, terpene specific, dose dependent, and transient in time. This work paves the way for engineering terpene metabolisms in plant microbiomes for improved sustainable agriculture and bioenergy crop production.
Collapse
Affiliation(s)
- Ming-Yi Chou
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey, USA
| | - Trine B. Andersen
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Marco E. Mechan Llontop
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Nick Beculheimer
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Alassane Sow
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Nick Moreno
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Research Group on Bacterial Efflux and Environmental Resistance, CNRS, INRAe, École Nationale Véterinaire de Lyon and Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Bjoern Hamberger
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Nagy L, Vonk P, Künzler M, Földi C, Virágh M, Ohm R, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu X, Nan S, Pareek M, Sahu N, Szathmári B, Varga T, Wu H, Yang X, Merényi Z. Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Stud Mycol 2023; 104:1-85. [PMID: 37351542 PMCID: PMC10282164 DOI: 10.3114/sim.2022.104.01] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/02/2022] [Indexed: 01/09/2024] Open
Abstract
Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.
Collapse
Affiliation(s)
- L.G. Nagy
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - P.J. Vonk
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - M. Künzler
- Institute of Microbiology, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland;
| | - C. Földi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - M. Virágh
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - R.A. Ohm
- Microbiology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands;
| | - F. Hennicke
- Project Group Genetics and Genomics of Fungi, Chair Evolution of Plants and Fungi, Ruhr-University Bochum, 44780, Bochum, North Rhine-Westphalia, Germany;
| | - B. Bálint
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Á. Csernetics
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Hegedüs
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - Z. Hou
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X.B. Liu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - S. Nan
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - M. Pareek
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - N. Sahu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - B. Szathmári
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - T. Varga
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - H. Wu
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| | - X. Yang
- Institute of Applied Mycology, Huazhong Agricultural University, 430070 Hubei Province, PR China
| | - Z. Merényi
- Synthetic and Systems Biology Unit, Biological Research Center, Szeged, 6726, Hungary;
| |
Collapse
|
12
|
Tan N, Ong L, Shukal S, Chen X, Zhang C. High-Yield Biosynthesis of trans-Nerolidol from Sugar and Glycerol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37148252 DOI: 10.1021/acs.jafc.3c01161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Isoprenoids, or terpenoids, have wide applications in food, feed, pharmaceutical, and cosmetic industries. Nerolidol, an acyclic C15 isoprenoid, is widely used in cosmetics, food, and personal care products. Current supply of nerolidol is mainly from plant extraction that is inefficient, costly, and of inconsistent quality. Here, we screened various nerolidol synthases from bacteria, fungi, and plants and found that the strawberry nerolidol synthase was most active in Escherichia coli. Through systematic optimization of the biosynthetic pathways, carbon sources, inducer, and genome editing, we constructed a series of deletion strains (single mutants ΔldhA, ΔpoxB, ΔpflB, and ΔtnaA; double mutants ΔadhE-ΔldhA; and triple mutants and beyond ΔadhE-ΔldhA-ΔpflB and ΔadhE-ΔldhA-ΔackA-pta) that produced high yields of 100% trans-nerolidol. In flasks, the highest nerolidol titers were 1.8 and 3.3 g/L in glucose-only and glucose-lactose-glycerol media, respectively. The highest yield reached 26.2% (g/g), >90% of the theoretic yield. In two-phase extractive fed-batch fermentation, our strain produced ∼16 g/L nerolidol within 4 days with about 9% carbon yield (g/g). In a single-phase fed-batch fermentation, the strain produced >6.8 g/L nerolidol in 3 days. To the best of our knowledge, our titers and productivity are the highest in the literature, paving the way for future commercialization and inspiring biosynthesis of other isoprenoids.
Collapse
Affiliation(s)
- Nicola Tan
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation (SIFBI), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Leonard Ong
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation (SIFBI), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Sudha Shukal
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation (SIFBI), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Xixian Chen
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation (SIFBI), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| | - Congqiang Zhang
- Agency for Science, Technology and Research (A*STAR), Singapore Institute of Food and Biotechnology Innovation (SIFBI), 31 Biopolis Way, Nanos, Singapore 138669, Republic of Singapore
| |
Collapse
|
13
|
T R, Sharma D, Lin F, Choong YK, Lim C, Jobichen C, Zhang C. Structural Understanding of Fungal Terpene Synthases for the Formation of Linear or Cyclic Terpene Products. ACS Catal 2023; 13:4949-4959. [PMID: 37066048 PMCID: PMC10088877 DOI: 10.1021/acscatal.2c05598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Indexed: 03/29/2023]
Abstract
Terpene synthases (TPSs), known gatekeepers of terpenoid diversity, are the main targets for enzyme engineering attempts. To this end, we have determined the crystal structure of Agrocybe pediades linalool synthase (Ap.LS), which has been recently reported to be 44-fold and 287-fold more efficient than bacterial and plant counterparts, respectively. Structure-based molecular modeling followed by in vivo as well as in vitro tests confirmed that the region of 60-69aa and Tyr299 (adjacent to the motif "WxxxxxRY") are essential for maintaining Ap.LS specificity toward a short-chain (C10) acyclic product. Ap.LS Y299 mutants (Y299A, Y299C, Y299G, Y299Q, and Y299S) yielded long-chain (C15) linear or cyclic products. Molecular modeling based on the Ap.LS crystal structure indicated that farnesyl pyrophosphate in the binding pocket of Ap.LS Y299A has less torsion strain energy compared to the wild-type Ap.LS, which can be partially attributed to the larger space in Ap.LS Y299A for better accommodation of the longer chain (C15). Linalool/nerolidol synthase Y298 and humulene synthase Y302 mutations also produced C15 cyclic products similar to Ap.LS Y299 mutants. Beyond the three enzymes, our analysis confirmed that most microbial TPSs have asparagine at the position and produce mainly cyclized products (δ-cadinene, 1,8-cineole, epi-cubebol, germacrene D, β-barbatene, etc.). In contrast, those producing linear products (linalool and nerolidol) typically have a bulky tyrosine. The structural and functional analysis of an exceptionally selective linalool synthase, Ap.LS, presented in this work provides insights into factors that govern chain length (C10 or C15), water incorporation, and cyclization (cyclic vs acyclic) of terpenoid biosynthesis.
Collapse
|
14
|
Rinaldi MA, Tait S, Toogood HS, Scrutton NS. Bioproduction of Linalool From Paper Mill Waste. Front Bioeng Biotechnol 2022; 10:892896. [PMID: 35711639 PMCID: PMC9195575 DOI: 10.3389/fbioe.2022.892896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022] Open
Abstract
A key challenge in chemicals biomanufacturing is the maintenance of stable, highly productive microbial strains to enable cost-effective fermentation at scale. A “cookie-cutter” approach to microbial engineering is often used to optimize host stability and productivity. This can involve identifying potential limitations in strain characteristics followed by attempts to systematically optimize production strains by targeted engineering. Such targeted approaches however do not always lead to the desired traits. Here, we demonstrate both ‘hit and miss’ outcomes of targeted approaches in attempts to generate a stable Escherichia coli strain for the bioproduction of the monoterpenoid linalool, a fragrance molecule of industrial interest. First, we stabilized linalool production strains by eliminating repetitive sequences responsible for excision of pathway components in plasmid constructs that encode the pathway for linalool production. These optimized pathway constructs were then integrated within the genome of E. coli in three parts to eliminate a need for antibiotics to maintain linalool production. Additional strategies were also employed including: reduction in cytotoxicity of linalool by adaptive laboratory evolution and modification or homologous gene replacement of key bottleneck enzymes GPPS/LinS. Our study highlights that a major factor influencing linalool titres in E. coli is the stability of the genetic construct against excision or similar recombination events. Other factors, such as decreasing linalool cytotoxicity and changing pathway genes, did not lead to improvements in the stability or titres obtained. With the objective of reducing fermentation costs at scale, the use of minimal base medium containing paper mill wastewater secondary paper fiber as sole carbon source was also investigated. This involved simultaneous saccharification and fermentation using either supplemental cellulase blends or by co-expressing secretable cellulases in E. coli containing the stabilized linalool production pathway. Combined, this study has demonstrated a stable method for linalool production using an abundant and low-cost feedstock and improved production strains, providing an important proof-of-concept for chemicals production from paper mill waste streams. For scaled production, optimization will be required, using more holistic approaches that involve further rounds of microbial engineering and fermentation process development.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Future Biomanufacturing Research Hub, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Shirley Tait
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Helen S Toogood
- Future Biomanufacturing Research Hub, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Nigel S Scrutton
- Future Biomanufacturing Research Hub, Manchester, United Kingdom.,Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom.,C3 Biotechnologies (Maritime and Aerospace) Ltd, Lancaster, United Kingdom
| |
Collapse
|
15
|
Abstract
Within the kingdom of fungi, the division Basidiomycota represents more than 30,000 species, some with huge genomes indicating great metabolic potential. The fruiting bodies of many basidiomycetes are appreciated as food (“mushrooms”). Solid-state and submerged cultivation processes have been established for many species. Specifically, xylophilic fungi secrete numerous enzymes but also form smaller metabolites along unique pathways; both groups of compounds may be of interest to the food processing industry. To stimulate further research and not aim at comprehensiveness in the broad field, this review describes some recent progress in fermentation processes and the knowledge of fungal genetics. Processes with potential for food applications based on lipases, esterases, glycosidases, peptidases and oxidoreductases are presented. The formation and degradation of colourants, the degradation of harmful food components, the formation of food ingredients and particularly of volatile and non-volatile flavours serve as examples. In summary, edible basidiomycetes are foods—and catalysts—for food applications and rich donors of genes to construct heterologous cell factories for fermentation processes. Options arise to support the worldwide trend toward greener, more eco-friendly and sustainable processes.
Collapse
|
16
|
Ma X, Liang H, Pan Q, Prather KLJ, Sinskey AJ, Stephanopoulos G, Zhou K. Optimization of the Isopentenol Utilization Pathway for Isoprenoid Synthesis in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3512-3520. [PMID: 35286075 DOI: 10.1021/acs.jafc.2c00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Engineering microbes to produce isoprenoids can be limited by the competition between product formation and cell growth because biomass and isoprenoids are naturally derived from central metabolism. Recently, a two-step synthetic pathway was developed to partially decouple isoprenoid formation from central carbon metabolism. The pathway used exogenously added isopentenols as substrates. In the present study, we systematically optimized this isopentenol utilization pathway in Escherichia coli by comparing enzyme variants from different species, tuning enzyme expression levels, and using a two-stage process. Under the optimal conditions found in this study, ∼300 mg/L lycopene was synthesized from 2 g/L isopentenol in 24 h. The strain could be easily modified to synthesize two other isoprenoid molecules efficiently (248 mg/L β-carotene or 364 mg/L R-(-)-linalool produced from 2 g/L isopentenol). This study lays a solid foundation for producing agri-food isoprenoids at high titer/productivity from cost-effective feedstocks.
Collapse
Affiliation(s)
- Xiaoqiang Ma
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong Liang
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Qiuchi Pan
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Kristala L J Prather
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anthony J Sinskey
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregory Stephanopoulos
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kang Zhou
- Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP), Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
17
|
Cao R, Wu X, Wang Q, Qi P, Zhang Y, Wang L, Sun C. Characterization of γ-Cadinene Enzymes in Ganoderma lucidum and Ganoderma sinensis from Basidiomycetes Provides Insight into the Identification of Terpenoid Synthases. ACS OMEGA 2022; 7:7229-7239. [PMID: 35252713 PMCID: PMC8892675 DOI: 10.1021/acsomega.1c06792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Enzymes boost protein engineering, directed evolution, and the biochemical industry and are also the cornerstone of metabolic engineering. Basidiomycetes are known to produce a large variety of terpenoids with unique structures. However, basidiomycetous terpene synthases remain largely untapped. Therefore, we provide a modeling method to obtain specific terpene synthases. Aided by bioinformatics analysis, three γ-cadinene enzymes from Ganoderma lucidum and Ganoderma sinensis were accurately predicted and identified experimentally. Based on the highly conserved amino motifs of the characterized γ-cadinene enzymes, the enzyme was reassembled as model 1. Using this model as a template, 67 homologous sequences of the γ-cadinene enzyme were screened from the National Center for Biotechnology Information (NCBI). According to the 67 sequences, the same gene structure, and similar conserved motifs to model 1, the γ-cadinene enzyme model was further improved by the same construction method and renamed as model 2. The results of bioinformatics analysis show that the conservative regions of models 1 and 2 are highly similar. In addition, five of these sequences were verified, 100% of which were γ-cadinene enzymes. The accuracy of the prediction ability of the γ-cadinene enzyme model was proven. In the same way, we also reanalyzed the identified Δ6-protoilludene enzymes in fungi and (-)-α-bisabolol enzymes in plants, all of which have their own unique conserved motifs. Our research method is expected to be used to study other terpenoid synthases with a similar or the same function in basidiomycetes, ascomycetes, bacteria, and plants and to provide rich enzyme resources.
Collapse
Affiliation(s)
- Rui Cao
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Xinlong Wu
- College
of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Qi Wang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Pengyan Qi
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yuna Zhang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Lizhi Wang
- School
of Chinese Materia Medica, Tianjin University
of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Chao Sun
- Institute
of Medicinal Plant Development, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, P. R. China
| |
Collapse
|
18
|
Rinaldi MA, Ferraz CA, Scrutton NS. Alternative metabolic pathways and strategies to high-titre terpenoid production in Escherichia coli. Nat Prod Rep 2022; 39:90-118. [PMID: 34231643 PMCID: PMC8791446 DOI: 10.1039/d1np00025j] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Covering: up to 2021Terpenoids are a diverse group of chemicals used in a wide range of industries. Microbial terpenoid production has the potential to displace traditional manufacturing of these compounds with renewable processes, but further titre improvements are needed to reach cost competitiveness. This review discusses strategies to increase terpenoid titres in Escherichia coli with a focus on alternative metabolic pathways. Alternative pathways can lead to improved titres by providing higher orthogonality to native metabolism that redirects carbon flux, by avoiding toxic intermediates, by bypassing highly-regulated or bottleneck steps, or by being shorter and thus more efficient and easier to manipulate. The canonical 2-C-methyl-D-erythritol 4-phosphate (MEP) and mevalonate (MVA) pathways are engineered to increase titres, sometimes using homologs from different species to address bottlenecks. Further, alternative terpenoid pathways, including additional entry points into the MEP and MVA pathways, archaeal MVA pathways, and new artificial pathways provide new tools to increase titres. Prenyl diphosphate synthases elongate terpenoid chains, and alternative homologs create orthogonal pathways and increase product diversity. Alternative sources of terpenoid synthases and modifying enzymes can also be better suited for E. coli expression. Mining the growing number of bacterial genomes for new bacterial terpenoid synthases and modifying enzymes identifies enzymes that outperform eukaryotic ones and expand microbial terpenoid production diversity. Terpenoid removal from cells is also crucial in production, and so terpenoid recovery and approaches to handle end-product toxicity increase titres. Combined, these strategies are contributing to current efforts to increase microbial terpenoid production towards commercial feasibility.
Collapse
Affiliation(s)
- Mauro A Rinaldi
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Clara A Ferraz
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
19
|
Sommer S, Fraatz MA, Büttner J, Salem AA, Rühl M, Zorn H. Wild Strawberry-like Flavor Produced by the Fungus Wolfiporia cocos─Identification of Character Impact Compounds by Aroma Dilution Analysis after Dynamic Headspace Extraction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14222-14230. [PMID: 34786939 DOI: 10.1021/acs.jafc.1c05770] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Brown-rot fungi are particularly suitable for the sustainable and cost-efficient biotechnological production of natural flavors. In this study, Wolfiporia cocos was employed for the fermentation of European black currant pomace supplemented with aspartate in surface cultures to produce a flavor reminiscent of wild strawberries. Aroma dilution analysis (ADA) by means of dynamic headspace extraction was developed as a suitable technique for solid samples. The character impact compounds were quantified by stable isotope dilution analysis and standard addition and validated by recombination experiments. (R)-Linalool (1879 μg kg-1, ADA 211), methyl anthranilate (2206 μg kg-1, 210), 2-aminobenzaldehyde (771 μg kg-1, 25), and geraniol (138 μg kg-1, 25) were identified as key aroma compounds. Recombination experiments demonstrated that the combination of the four analyzed compounds was responsible for the odor impression reminiscent of wild strawberries.
Collapse
Affiliation(s)
- Svenja Sommer
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Marco A Fraatz
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Julia Büttner
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Ahmed A Salem
- Agricultural Microbiology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736 Benha, Qalyubia, Egypt
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
20
|
Ferraz CA, Leferink NGH, Kosov I, Scrutton NS. Isopentenol Utilization Pathway for the Production of Linalool in Escherichia coli Using an Improved Bacterial Linalool/Nerolidol Synthase. Chembiochem 2021; 22:2325-2334. [PMID: 33938632 PMCID: PMC8362072 DOI: 10.1002/cbic.202100110] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/02/2021] [Indexed: 11/24/2022]
Abstract
Linalool is a monoterpenoid used as a fragrance ingredient, and is a promising source for alternative fuels. Synthetic biology offers attractive alternative production methods compared to extraction from natural sources and chemical synthesis. Linalool/nerolidol synthase (bLinS) from Streptomyces clavuligerus is a bifunctional enzyme, producing linalool as well as the sesquiterpenoid nerolidol when expressed in engineered Escherichia coli harbouring a precursor terpenoid pathway such as the mevalonate (MVA) pathway. Here we identified two residues important for substrate selection by bLinS, L72 and V214, where the introduction of bulkier residues results in variants with reduced nerolidol formation. Terpenoid production using canonical precursor pathways is usually limited by numerous and highly regulated enzymatic steps. Here we compared the canonical MVA pathway to the non-canonical isopentenol utilization (IU) pathway to produce linalool using the optimised bLinS variant. The IU pathway uses isoprenol and prenol to produce linalool in only five steps. Adjusting substrate, plasmid system, inducer concentration, and cell strain directs the flux towards monoterpenoids. Our integrated approach, combining enzyme engineering with flux control using the artificial IU pathway, resulted in high purity production of the commercially attractive monoterpenoid linalool, and will guide future efforts towards efficient optimisation of terpenoid production in engineered microbes.
Collapse
Affiliation(s)
- Clara A. Ferraz
- Manchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicole G. H. Leferink
- Manchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
- Future Biomanufacturing Research HubManchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Iaroslav Kosov
- Manchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
- Future Biomanufacturing Research HubManchester Institute of Biotechnology, Department of ChemistrySchool of Natural SciencesUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| |
Collapse
|