1
|
Force E, Suray C, Girardin C, Sokolowski MBC, Dacher M. Insights on the nutritional ecology of a nocturnal pollinating insect. INSECT SCIENCE 2025. [PMID: 40035497 DOI: 10.1111/1744-7917.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
Nutritional ecology examines the environmental effects on nutritional needs, food intake and foraging behaviors, and the use of nutrients ingested by animals. Adults of many insects' species feed on nectars rich in sugars allowing them to match the nutritional needs necessary for reproduction. Among insects, Lepidoptera are often considered opportunistic foragers that visit a wide variety of available flowers, although with some preferences. While nutritional ecology of diurnal Lepidoptera is beginning to be explored, very little work focuses on nocturnal species because they are complicated to study in the wild. To address this, we used new laboratory approaches to study feeding behaviors (number and duration of visits to artificial flowers, food preferences associated with the texture and odors of the flowers) as well as gustatory detection by antennae (proboscis extension reflex) in the male crop pest moth Agrotis ipsilon. We showed that (i) food responsiveness is age-dependent and increases mainly with sugar quantity and marginally with sugar quality, (ii) diet quality impacts feeding behaviors in the first days of adulthood, and (iii) male moths choose their food through floral cues. Taken together, these data allow to define this species as a generalist forager with a preference for flowers with sugary nectars rich in sucrose, fructose, and glucose. Our results thus provide considerable information on the close links between food sources and nutritional ecology in this species, which is important for guiding future studies on their behavioral ecology, population dynamics, as well as for population monitoring and for regional pest management.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| | - Caroline Suray
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | - Charlotte Girardin
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | | | - Matthieu Dacher
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| |
Collapse
|
2
|
Tyler CJ, Mahajan S, Smith L, Okamoto H, Wijnen H. Adult Diel Locomotor Behaviour in the Agricultural Pest Plutella xylostella Reflects Temperature-Driven and Light-Repressed Regulation Rather than Coupling to Circadian Clock Gene Rhythms. INSECTS 2025; 16:182. [PMID: 40003812 PMCID: PMC11856205 DOI: 10.3390/insects16020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
The diamondback moth, Plutella xylostella, is arguably the most economically impactful and widespread lepidopteran pest. Though the larval P. xylostella life stage is responsible for most of this cost through the consumption of crops, it is the adult form that spreads the pest to fresh crops all around the world, seeking them out in a seasonally expanding range. It is therefore important to understand the activity rhythms of adult P. xylostella in response to environmental cues such as light and temperature. We analysed diel rhythms in both adult clock gene expression and locomotor behaviour for the ROTH P. xylostella strain. Real-time quantitative PCR analyses of P. xylostella demonstrated diel rhythms for transcripts of the clock genes period and timeless under both entrained and free-running conditions indicating the presence of a functional daily timekeeping mechanism. However, adult locomotor rhythms exhibited temperature-driven and light-repressed regulation rather than circadian control. Thus, our analyses show a lack of coupling between the P. xylostella circadian clock and adult locomotor behaviour, which may be relevant in predicting the activity patterns of this agricultural pest.
Collapse
Affiliation(s)
- Connor J. Tyler
- SPITFIRE NERC Doctoral Training Partnership, SoCoBio BBSRC Doctoral Training Partnership, School of Biological Sciences and Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (C.J.T.); (S.M.); (L.S.); (H.O.)
| | - Shubhangi Mahajan
- SPITFIRE NERC Doctoral Training Partnership, SoCoBio BBSRC Doctoral Training Partnership, School of Biological Sciences and Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (C.J.T.); (S.M.); (L.S.); (H.O.)
| | - Lena Smith
- SPITFIRE NERC Doctoral Training Partnership, SoCoBio BBSRC Doctoral Training Partnership, School of Biological Sciences and Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (C.J.T.); (S.M.); (L.S.); (H.O.)
| | - Haruko Okamoto
- SPITFIRE NERC Doctoral Training Partnership, SoCoBio BBSRC Doctoral Training Partnership, School of Biological Sciences and Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (C.J.T.); (S.M.); (L.S.); (H.O.)
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Herman Wijnen
- SPITFIRE NERC Doctoral Training Partnership, SoCoBio BBSRC Doctoral Training Partnership, School of Biological Sciences and Institute for Life Sciences, University of Southampton, Highfield Campus, Southampton SO17 1BJ, UK; (C.J.T.); (S.M.); (L.S.); (H.O.)
| |
Collapse
|
3
|
Nishisue K, Sugiura R, Nakano R, Shibuya K, Fukuda S. Measuring the Flight Trajectory of a Free-Flying Moth on the Basis of Noise-Reduced 3D Point Cloud Time Series Data. INSECTS 2024; 15:373. [PMID: 38921088 PMCID: PMC11203875 DOI: 10.3390/insects15060373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024]
Abstract
Pest control is crucial in crop production; however, the use of chemical pesticides, the primary method of pest control, poses environmental issues and leads to insecticide resistance in pests. To overcome these issues, laser zapping has been studied as a clean pest control technology against the nocturnal cotton leafworm, Spodoptera litura, which has high fecundity and causes severe damage to various crops. For better sighting during laser zapping, it is important to measure the coordinates and speed of moths under low-light conditions. To achieve this, we developed an automatic detection pipeline based on point cloud time series data from stereoscopic images. We obtained 3D point cloud data from disparity images recorded under infrared and low-light conditions. To identify S. litura, we removed noise from the data using multiple filters and a support vector machine. We then computed the size of the outline box and directional angle of the 3D point cloud time series to determine the noisy point clouds. We visually inspected the flight trajectories and found that the size of the outline box and the movement direction were good indicators of noisy data. After removing noisy data, we obtained 68 flight trajectories, and the average flight speed of free-flying S. litura was 1.81 m/s.
Collapse
Affiliation(s)
- Koji Nishisue
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan;
| | - Ryo Sugiura
- The Research Center for Agricultural Information Technology (RCAIT), National Agriculture and Food Research Organization (NARO), 2-1-9 Kannondai, Tsukuba-shi 305-0856, Ibaraki, Japan;
| | - Ryo Nakano
- Institute for Plant Protection (NIPP), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba-shi 305-8666, Ibaraki, Japan; (R.N.); (K.S.)
| | - Kazuki Shibuya
- Institute for Plant Protection (NIPP), National Agriculture and Food Research Organization (NARO), 2-1-18 Kannondai, Tsukuba-shi 305-8666, Ibaraki, Japan; (R.N.); (K.S.)
| | - Shinji Fukuda
- Institute of Agriculture, Tokyo University of Agriculture and Technology (TUAT), 3-5-8 Saiwai-cho, Fuchu-shi 183-8509, Tokyo, Japan;
- The Research Center for Agricultural Information Technology (RCAIT), National Agriculture and Food Research Organization (NARO), 2-1-9 Kannondai, Tsukuba-shi 305-0856, Ibaraki, Japan;
| |
Collapse
|
4
|
Force E, Sokolowski MBC, Suray C, Debernard S, Chatterjee A, Dacher M. Regulation of feeding dynamics by the circadian clock, light and sex in an adult nocturnal insect. Front Physiol 2024; 14:1304626. [PMID: 38264330 PMCID: PMC10803417 DOI: 10.3389/fphys.2023.1304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Animals invest crucial resources in foraging to support development, sustenance, and reproduction. Foraging and feeding behaviors are rhythmically expressed by most insects. Rhythmic behaviors are modified by exogenous factors like temperature and photoperiod, and internal factors such as the physiological status of the individual. However, the interactions between these factors and the circadian clock to pattern feeding behavior remains elusive. As Drosophila, a standard insect model, spends nearly all its life on food, we rather chose to focus on the adults of a non-model insect, Agrotis ipsilon, a nocturnal cosmopolitan crop pest moth having structured feeding activity. Our study aimed to explore the impact of environmental cues on directly measured feeding behavior rhythms. We took advantage of a new experimental set-up, mimicking an artificial flower, allowing us to specifically monitor feeding behavior in a naturalistic setting, e.g., the need to enter a flower to get food. We show that the frequency of flower visits is under the control of the circadian clock in males and females. Feeding behavior occurs only during the scotophase, informed by internal clock status and external photic input, and females start to visit flowers earlier than males. Shorter duration visits predominate as the night progresses. Importantly, food availability reorganizes the microstructure of feeding behavior, revealing its plasticity. Interestingly, males show a constant number of daily visits during the 5 days of adult life whereas females decrease visitations after the third day of adult life. Taken together, our results provide evidence that the rhythmicity of feeding behavior is sexually dimorphic and controlled by photoperiodic conditions through circadian clock-dependent and independent pathways. In addition, the use of the new experimental set-up provides future opportunities to examine the regulatory mechanisms of feeding behavior paving the way to investigate complex relationships between feeding, mating, and sleep-wake rhythms in insects.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| | | | - Caroline Suray
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| | - Abhishek Chatterjee
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
| | - Matthieu Dacher
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Versailles, France
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institute for Ecology and Environmental Sciences of Paris, iEES Paris, Paris, France
| |
Collapse
|
5
|
Yang HH, Li JQ, Ma S, Yao WC, Chen YW, El Wakil A, Dewer Y, Zhu XY, Sun L, Zhang YN. RNAi-mediated silencing of SlitPer disrupts sex pheromone communication behavior in Spodoptera litura. PEST MANAGEMENT SCIENCE 2023; 79:3993-3998. [PMID: 37269066 DOI: 10.1002/ps.7593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND The 24-h circadian rhythm is considered crucial for insect sexual communication. However, its molecular mechanisms and signaling pathways, particularly the roles of the clock gene period (Per), remain largely unclear. The sex pheromone communication behavior of Spodoptera litura displays typical circadian rhythm characteristics. Thus, it represents an excellent model for functional analyses of the clock gene Per. RESULTS In this study, we investigated the potential roles of SlitPer in regulating sex pheromone communication in S. litura using RNA interference, quantitative real-time polymerase chain reactions (qPCR), gas chromatography, and behavioral assays. The qPCR results showed that the expression levels of SlitPer and two desaturase genes (SlitDes5 and SlitDes11) in the siPer group differed significantly at most time points from those in the siNC group. Dynamic variation in the three major sex pheromone titers and calling behavior of S. litura females in the siPer group was disordered. In addition, the mating rates of siPer S. litura females decreased significantly by 33.33%. Oviposition by mated siPer females was substantially reduced by 84.84%. CONCLUSION These findings provide a fundamental basis for elucidating the molecular mechanism by which Per regulates sex pheromone communication behavior in lepidopteran species. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui-Hui Yang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jian-Qiao Li
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Sai Ma
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Wei-Chen Yao
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yu-Wen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
6
|
Ma S, Li LL, Yao WC, Yin MZ, Li JQ, Xu JW, Dewer Y, Zhu XY, Zhang YN. Two Odorant-Binding Proteins Involved in the Recognition of Sex Pheromones in Spodoptera litura Larvae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12372-12382. [PMID: 36129378 DOI: 10.1021/acs.jafc.2c04335] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Usually, the recognition of sex pheromone signals is restricted to adult moths. Here, our behavioral assay showed that fourth-instar Spodoptera litura larvae are attracted to cabbage laced with minor sex pheromones Z9,E12-tetradecadienyl acetate (Z9,E12-14:Ac) or Z9-tetradecenyl acetate (Z9-14:Ac). Seven odorant-binding proteins (OBPs) were upregulated after exposure to Z9,E12-14:Ac, and one OBP was upregulated after exposure to Z9-14:Ac. Fluorescence competitive binding assays showed that GOBP2 and OBP7 bound to sex pheromones. RNAi treatment significantly downregulated GOBP2 and OBP7 mRNA expression by 70.37 and 63.27%, respectively. The siOBP-treated larvae were not attracted to Z9,E12-14:Ac or Z9-14:Ac, and the corresponding preference indices were significantly lower than those in siGFP-treated larvae. Therefore, we concluded that GOBP2 and OBP7 are involved in the attraction of S. litura larvae to food containing Z9,E12-14:Ac and Z9-14:Ac. These results provide an important basis for exploring the olfactory mechanisms underlying sex pheromone attraction in moth larvae.
Collapse
Affiliation(s)
- Sai Ma
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Lu Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Mao-Zhu Yin
- Institute of Plant Protection, Suzhou Academy of Agricultural Sciences, Suzhou 234000, China
| | - Jian-Qiao Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki 12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| |
Collapse
|
7
|
Davis W, Endo M, Locke JCW. Spatially specific mechanisms and functions of the plant circadian clock. PLANT PHYSIOLOGY 2022; 190:938-951. [PMID: 35640123 PMCID: PMC9516738 DOI: 10.1093/plphys/kiac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Like many organisms, plants have evolved a genetic network, the circadian clock, to coordinate processes with day/night cycles. In plants, the clock is a pervasive regulator of development and modulates many aspects of physiology. Clock-regulated processes range from the correct timing of growth and cell division to interactions with the root microbiome. Recently developed techniques, such as single-cell time-lapse microscopy and single-cell RNA-seq, are beginning to revolutionize our understanding of this clock regulation, revealing a surprising degree of organ, tissue, and cell-type specificity. In this review, we highlight recent advances in our spatial view of the clock across the plant, both in terms of how it is regulated and how it regulates a diversity of output processes. We outline how understanding these spatially specific functions will help reveal the range of ways that the clock provides a fitness benefit for the plant.
Collapse
Affiliation(s)
- William Davis
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Motomu Endo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - James C W Locke
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Takeda M, Suzuki T. Circadian and Neuroendocrine Basis of Photoperiodism Controlling Diapause in Insects and Mites: A Review. Front Physiol 2022; 13:867621. [PMID: 35812309 PMCID: PMC9257128 DOI: 10.3389/fphys.2022.867621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
The photoperiodic system is concealed in the highly complex black-box, comprising four functional subunits: 1) a photo/thermo-sensitive input unit, 2) a photoperiodic clock based on a circadian system, 3) a condenser unit counting the number of inductive signals, and 4) a neuroendocrine switch that triggers a phenotypic shift. This review aims to summarize the research history and current reach of our understanding on this subject to connect it with the molecular mechanism of the circadian clock rapidly being unveiled. The review also focuses on the mode of intersubunit information transduction. It will scan the recent advancement in research on each functional subunit, but special attention will be given to the circadian clock-endocrine conjunct and the role of melatonin signaling in the regulation of insect photoperiodism. Prothoracicotropic hormone (PTTH) probably plays the most crucial role in the regulation of pupal diapause, which is the simplest model system of diapause regulation by hormones investigated so far, particularly in the Chinese oak silkmoth (Antheraea pernyi). A search for the trigger to release the PTTH found some candidates, that is, indoleamines. Indolamine metabolism is controlled by arylalkylamine N-acetyltransferase (aaNAT). Indolamine dynamics and aaNAT enzymatic activity changed according to photoperiods. aaNAT activity and melatonin content in the brain showed not only a photoperiodic response but also a circadian fluctuation. aaNAT had multiple E-boxes, suggesting that it is a clock-controlled gene (ccg), which implies that cycle (cyc, or brain-muscle Arnt-like 1 = Bmal1)/Clock (Clk) heterodimer binds to E-box and stimulates the transcription of aaNAT, which causes the synthesis of melatonin. RNAi against transcription modulators, cyc, or Clk downregulated aaNAT transcription, while RNAi against repressor of cyc/Clk, per upregulated aaNAT transcription. Immunohistochemical localization showed that the circadian neurons carry epitopes of melatonin-producing elements such as aaNAT, the precursor serotonin, HIOMT, and melatonin as well as clock gene products such as cyc-ir, Per-ir, and dbt-ir, while PTTH-producing neurons juxtaposed against the clock neurons showed hMT2-ir in A. pernyi brain. Melatonin probably binds to the putative melatonin receptor (MT) that stimulates Ca2+ influx, which in turn activates PKC. This induces Rab 8 phosphorylation and exocytosis of PTTH, leading to termination of diapause. All the PTTH-expressing neurons have PKC-ir, and Rab8-ir. When diapause is induced and maintained under short days, serotonin binding to 5HTR1B suppresses PTTH release in a yet unknown way. RNAi against this receptor knocked out photoperiodism; short day response is blocked and diapause was terminated even under the short day condition. The result showed that a relatively simple system controls both induction and termination in pupal diapause of A. pernyi: the circadian system regulates the transcription of aaNAT as a binary switch, the enzyme produces a melatonin rhythm that gates PTTH release, and 5HTR1B and MT are probably also under photoperiodic regulation. Finally, we listed the remaining riddles which need to be resolved, to fully understand this highly complex system in future studies.
Collapse
Affiliation(s)
- Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Takeshi Suzuki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
9
|
Haj Darwich CM, Chrzanowski MM, Bernatowicz PP, Polanska MA, Joachimiak E, Bebas P. Molecular Oscillator Affects Susceptibility of Caterpillars to Insecticides: Studies on the Egyptian Cotton Leaf Worm- Spodoptera littoralis (Lepidoptera: Noctuidae). INSECTS 2022; 13:insects13050488. [PMID: 35621821 PMCID: PMC9147166 DOI: 10.3390/insects13050488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The molecular oscillator is the core of the biological clock and is formed by genes and proteins whose cyclic expression is regulated in the transcriptional-translational feedback loops (TTFLs). Proteins of the TTFLs are regulators of both their own and executive genes involved in the control of many processes in insects (e.g., rhythmic metabolism of xenobiotics, including insecticides). We disrupted the clock operation in S. littoralis larvae by injecting the dsRNA of clock genes into their body cavity and culturing the larvae under continuous light. As a result, the daily susceptibility of larvae to insecticides was abolished and the susceptibility itself increased (in most cases). In the fat body, midgut, and Malpighian tubules (the main organs metabolizing xenobiotics) of the larvae treated with injected-dsRNA, the daily activity profiles of enzymes involved in detoxification-cytochrome P450 monooxygenases, Glutathione-S-transferase, and esterase-have changed significantly. The presented results prove the role of the molecular oscillator in the regulation of larvae responses to insecticides and provide grounds for rational use of these compounds (at suitable times of the day), and may indicate clock genes as potential targets of molecular manipulation to produce plant protection compounds based on the RNAi method.
Collapse
Affiliation(s)
- Choukri M. Haj Darwich
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
| | - Marcin M. Chrzanowski
- Biology Teaching Laboratory, Faculty’s Independent Centers, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Piotr P. Bernatowicz
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
| | - Marta A. Polanska
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Piotr Bebas
- Department of Animal Physiology, Institute of Functional Biology and Ecology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (C.M.H.D.); (P.P.B.); (M.A.P.)
- Correspondence: ; Tel.: +48-22-554-1030
| |
Collapse
|
10
|
Ma S, Wang Y, Yang X, Ni B, Lü S. MOF Hybrid for Long-Term Pest Management and Micronutrient Supply Triggered with Protease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17783-17793. [PMID: 35393856 DOI: 10.1021/acsami.2c01187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Advanced intelligent systems for delivery of pesticides or fertilizers require formulations that allow for long-term efficacy. In this work, a metal-organic framework (MOF) hybrid was developed for long-term pest management and micronutrient supply. Zeolitic imidazolate framework-8 was fabricated for crop micronutrients (Zn2+) supply and insecticide dinotefuran (DNF) encapsulation. Polymethylmethacrylate was polymerized in situ to impart the MOF hybrid with sustained cargo delivery. Then, zein was introduced to facilitate protease-triggered cargo release associated with the microenvironment of pests and targeted release. The resulting MOF hybrid exhibited stimulus-responsive, slow-release behaviors. Sustained DNF delivery was achieved over a period of at least 32 days in soil. Compared with that of free DNF, the UV resistance of DNF in the MOF hybrid increased by nearly 10 times, and the insecticidal efficiency increased 33.3% with leaching treatment and 40.1% after incubating in a greenhouse for 14 days. This MOF hybrid provides a controlled, targeted, and sustained delivery formulation for long-term pest management and crop micronutrient supply and has huge application prospects in sustainable agriculture.
Collapse
Affiliation(s)
- Song Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yingjie Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xipeng Yang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Boli Ni
- Gansu Tobacco Industrial Company Limited, Lanzhou 730050, China
| | - Shaoyu Lü
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Fu Z, Han F, Huang K, Zhang J, Qin JG, Chen L, Li E. Impact of imidacloprid exposure on the biochemical responses, transcriptome, gut microbiota and growth performance of the Pacific white shrimp Litopenaeus vannamei. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127513. [PMID: 34687996 DOI: 10.1016/j.jhazmat.2021.127513] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of neonicotinoid insecticides, such as imidacloprid, in agriculture is one of the key factors for the drop in the survival of invertebrates, including decapod crustaceans. However, there is currently a lack of comprehensive studies on the chronic toxicity mechanisms in decapod crustaceans. Here, the concentration-dependent effects of imidacloprid on the physiology and biochemistry, gut microbiota and transcriptome of L. vannamei , and the interaction between imidacloprid, gut microbiota and genes were studied. Imidacloprid caused oxidative stress, leading to reduced growth and to immunity and tissue damage in L. vannamei . Imidacloprid increased the gut pathogenic microbiota abundance and broke the steady state of the gut microbiota interaction network, resulting in microbiota function disorders. Chronic imidacloprid exposure induced overall transcriptome changes in L. vannamei . Specifically, imidacloprid caused a large number of differentially expressed genes (DEGs) to be significantly downregulated. The inhibition of autophagy-related pathways revealed the toxic process of imidacloprid to L. vannamei . The changes in phase I and II detoxification gene expression clarified the formation of a detoxification mechanism in L. vannamei . The disturbance of circadian rhythm (CLOCK) caused by imidacloprid is one of the reasons for the increase in gut pathogenic microbiota abundance.
Collapse
Affiliation(s)
- Zhenqiang Fu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Kaiqi Huang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
12
|
You C, Li Z, Yin Y, Na N, Gao X. Time of Day-Specific Changes in Metabolic Detoxification and Insecticide Tolerance in the House Fly, Musca domestica L. Front Physiol 2022; 12:803682. [PMID: 35069260 PMCID: PMC8777124 DOI: 10.3389/fphys.2021.803682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Both insects and mammals all exhibit a daily fluctuation of susceptibility to chemicals at different times of the day. However, this phenomenon has not been further studied in the house fly (Musca domestica L.) and a better understanding of the house fly on chronobiology should be useful for controlling this widespread disease vector. Here we explored diel time-of-day variations in insecticide susceptibility, enzyme activities, and xenobiotic-metabolizing enzyme gene expressions. The house fly was most tolerant to beta-cypermethrin in the late photophase at Zeitgeber time (ZT) 8 and 12 [i.e., 8 and 12 h after light is present in the light-dark cycle (LD)]. The activities of cytochrome P450, GST, and CarE enzymes were determined in the house flies collected at various time, indicating that rhythms occur in P450 and CarE activities. Subsequently, we observed diel rhythmic expression levels of detoxifying genes, and CYP6D1 and MdαE7 displayed similar expression patterns with enzyme activities in LD conditions, respectively. No diel rhythm was observed for CYP6D3 expression. These data demonstrated a diel rhythm of metabolic detoxification enzymes and insecticide susceptibility in M. domestica. In the future, the time-of-day insecticide efficacy could be considered into the management of the house fly.
Collapse
Affiliation(s)
- Chunmei You
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zelin Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yuanzhi Yin
- Department of Entomology, China Agricultural University, Beijing, China
| | - Naretuya Na
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Brady D, Saviane A, Cappellozza S, Sandrelli F. The Circadian Clock in Lepidoptera. Front Physiol 2021; 12:776826. [PMID: 34867483 PMCID: PMC8635995 DOI: 10.3389/fphys.2021.776826] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
With approximately 160,000 identified species of butterflies and moths, Lepidoptera are among the most species-rich and diverse insect orders. Lepidopteran insects have fundamental ecosystem functions as pollinators and valuable food sources for countless animals. Furthermore, Lepidoptera have a significant impact on the economy and global food security because many species in their larval stage are harmful pests of staple food crops. Moreover, domesticated species such as the silkworm Bombyx mori produce silk and silk byproducts that are utilized by the luxury textile, biomedical, and cosmetics sectors. Several Lepidoptera have been fundamental as model organisms for basic biological research, from formal genetics to evolutionary studies. Regarding chronobiology, in the 1970s, Truman's seminal transplantation experiments on different lepidopteran species were the first to show that the circadian clock resides in the brain. With the implementation of molecular genetics, subsequent studies identified key differences in core components of the molecular circadian clock of Lepidoptera compared to the dipteran Drosophila melanogaster, the dominant insect species in chronobiological research. More recently, studies on the butterfly Danaus plexippus have been fundamental in characterizing the interplay between the circadian clock and navigation during the seasonal migration of this species. Moreover, the advent of Next Generation Omic technologies has resulted in the production of many publicly available datasets regarding circadian clocks in pest and beneficial Lepidoptera. This review presents an updated overview of the molecular and anatomical organization of the circadian clock in Lepidoptera. We report different behavioral circadian rhythms currently identified, focusing on the importance of the circadian clock in controlling developmental, mating and migration phenotypes. We then describe the ecological importance of circadian clocks detailing the complex interplay between the feeding behavior of these organisms and plants. Finally, we discuss how the characterization of these features could be useful in both pest control, and in optimizing rearing of beneficial Lepidoptera.
Collapse
Affiliation(s)
- Daniel Brady
- Department of Biology, Università di Padova, Padova, Italy
| | - Alessio Saviane
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Padova, Italy
| | - Silvia Cappellozza
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment (CREA-AA), Padova, Italy
| | | |
Collapse
|
14
|
Kamruzzaman ASM, Hiragaki S, Watari Y, Natsukawa T, Yasuhara A, Ichihara N, Mohamed AA, Elgendy AM, Takeda M. Clock-controlled arylalkylamine N-acetyltransferase (aaNAT) regulates circadian rhythms of locomotor activity in the American cockroach, Periplaneta americana, via melatonin/MT2-like receptor. J Pineal Res 2021; 71:e12751. [PMID: 34091948 DOI: 10.1111/jpi.12751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/27/2022]
Abstract
Melatonin (MEL) orchestrates daily and seasonal rhythms (eg, locomotion, sleep/wake cycles, and migration among other rhythms) in diverse organisms. We investigated the effects of pharmacological doses (0.03-1 mM) of exogenous MEL intake in the cockroach, Periplaneta americana, on locomotor activity. As per os MEL concentration increased, cockroach locomotor rhythm in light-dark (LD) cycles became more synchronized. The ratio of night activity to 24-h activity increased and the acrophase (peak) slightly advanced. MEL application also influenced total activity bouts in the free-running rhythm. Since MEL slightly influenced τ in the free-running rhythms, it is not a central element of the circadian pacemaker but must influence mutual coupling of multi-oscillatory system components. Arylalkylamine N-acetyltransferase (aaNAT) regulates enzymatic production of MEL. aaNAT activities vary in circadian rhythms, and the immunoreactive aaNAT (aaNAT-ir) is colocalized with the key clock proteins cycle (CYC)-ir and pigment-dispersing factor (PDF)-ir These are elements of the central pacemaker and its output pathway as well as other circadian landmarks such as the anterior and posterior optic commissures (AOC and POC, respectively). It also partially shares immunohistochemical reactivity with PER-ir and DBT-ir neurons. We analyzed the role of Pamericana aaNAT1 (PaaaNAT1) (AB106562.1) by injecting dsRNAaaNAT1 . qPCR showed a decrease in accumulations of mRNAs encoding PaaaNAT1. The injections led to arrhythmicity in LD cycles and the arrhythmicity persisted in constant dark (DD). Continuous administration of MEL resynchronized the rhythm after arrhythmicity was induced by dsRNAaaNAT1 injection, suggesting that PaaaNAT is the key regulator of the circadian system in the cockroach via MEL production. PaaaNAT1 contains putative E-box regions which may explain its tight circadian control. The receptor that mediates MEL function is most likely similar to the mammalian MT2, because injecting the competitive MT2 antagonist luzindole blocked MEL function, and MEL injection after luzindole treatment restored MT function. Human MT2-ir was localized in the circadian neurons in the cockroach brain and subesophageal ganglion. We infer that MEL and its synthesizing enzyme, aaNAT, constitute at least one circadian output pathway of locomotor activity either as a distinct route or in association with PDF system.
Collapse
Affiliation(s)
- A S M Kamruzzaman
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Susumu Hiragaki
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yasuhiko Watari
- Faculty of Clinical Education, Ashiya University, Ashiya, Japan
| | - Takashi Natsukawa
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Akie Yasuhara
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Naoyuki Ichihara
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Azza M Elgendy
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Makio Takeda
- Graduate School of Natural Science and Technology, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
15
|
Liu J, Hua J, Qu B, Guo X, Wang Y, Shao M, Luo S. Insecticidal Terpenes From the Essential Oils of Artemisia nakaii and Their Inhibitory Effects on Acetylcholinesterase. FRONTIERS IN PLANT SCIENCE 2021; 12:720816. [PMID: 34456959 PMCID: PMC8397410 DOI: 10.3389/fpls.2021.720816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/12/2021] [Indexed: 05/10/2023]
Abstract
Essential oils (EOs) are often the source of insecticidal substances of high efficiency and low toxicity. From gas chromatograph-mass spectrometer, column chromatography, and nuclear magnetic resonance spectra analyses, twenty terpenes were identified from the EOs of Artemisia nakaii. These comprised mostly monoterpenes (49.01%) and sesquiterpenes (50.76%). The terpenes at the highest concentrations in the EOs of A. nakaii were feropodin (200.46 ± 1.42 μg/ml), (+)-camphor (154.93 ± 9.72 μg/ml), β-selinene (57.73 ± 2.48 μg/ml), and 1,8-cineole (17.99 ± 1.06 μg/ml), calculated using area normalization and external standards. The EOs were tested for biological activity and showed strong fumigant toxicity and significant antifeedant activity against the larvae of Spodoptera litura. Furthermore, the monoterpenes 1,8-cineole and (+)-camphor displayed significant fumigant activity against S. litura, with LC50 values of 7.00 ± 0.85 and 18.16 ± 2.31 μl/L, respectively. Antifeedant activity of the sesquiterpenes feropodin and β-selinene was obvious, with EC50 values of 12.23 ± 2.60 and 10.46 ± 0.27 μg/cm2, respectively. The EOs and β-selinene were also found to inhibit acetylcholinesterase, with IC50 values of 37.75 ± 3.59 and 6.88 ± 0.48 μg/ml, respectively. These results suggest that monoterpenes and sesquiterpenes from the EOs of A. nakaii could potentially be applied as a botanical pesticides in the control of S. litura.
Collapse
Affiliation(s)
- Jiayi Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang, China
| | - Bo Qu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang, China
| | - Xuanyue Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yangyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Meini Shao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Meini Shao,
| | - Shihong Luo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biological Invasions and Global Changes, Shenyang, China
- Shihong Luo, , orcid.org/0000-0003-3500-3466
| |
Collapse
|