1
|
Schell LD, Carmody RN. An energetic framework for gut microbiome-mediated obesity induced by early-life exposure to antibiotics. Cell Host Microbe 2025; 33:470-483. [PMID: 40209676 DOI: 10.1016/j.chom.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/15/2025] [Accepted: 03/11/2025] [Indexed: 04/12/2025]
Abstract
Early-life antibiotic (ELA) exposure has garnered attention for its potential role in modulating obesity risk, although outcomes from mouse experiments and human epidemiological studies often vary based on dosage and sex. Low-dose (subtherapeutic) antibiotics can enhance energy availability through moderate alterations in gut microbiome profile, while high-dose (therapeutic) antibiotics substantially deplete the gut microbiota, thereby contributing to short-term negative energy balance. In this perspective, we propose a framework to understand how these distinct impacts of antibiotics on the gut microbiome during critical developmental windows shape long-term obesity risk through their influence on host energy balance. Using this framework, we then propose several hypotheses to explain variation in ELA-induced obesity outcomes across males and females. We conclude by discussing the evolutionary implications of ELAs, positing that the response of the gut microbiome to ELAs may signal energy availability and environmental volatility, influencing metabolic programming and adaptive traits across generations.
Collapse
Affiliation(s)
- Laura D Schell
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Ismaeel A, Valentino TR, Burke B, Goh J, Saliu TP, Albathi F, Owen A, McCarthy JJ, Wen Y. Acetate and succinate benefit host muscle energetics as exercise-associated post-biotics. Physiol Rep 2023; 11:e15848. [PMID: 37940330 PMCID: PMC10632089 DOI: 10.14814/phy2.15848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
Recently, the gut microbiome has emerged as a potent modulator of exercise-induced systemic adaptation and appears to be crucial for mediating some of the benefits of exercise. This study builds upon previous evidence establishing a gut microbiome-skeletal muscle axis, identifying exercise-induced changes in microbiome composition. Metagenomics sequencing of fecal samples from non-exercise-trained controls or exercise-trained mice was conducted. Biodiversity indices indicated exercise training did not change alpha diversity. However, there were notable differences in beta-diversity between trained and untrained microbiomes. Exercise significantly increased the level of the bacterial species Muribaculaceae bacterium DSM 103720. Computation simulation of bacterial growth was used to predict metabolites that accumulate under in silico culture of exercise-responsive bacteria. We identified acetate and succinate as potential gut microbial metabolites that are produced by Muribaculaceae bacterium, which were then administered to mice during a period of mechanical overload-induced muscle hypertrophy. Although no differences were observed for the overall muscle growth response to succinate or acetate administration during the first 5 days of mechanical overload-induced hypertrophy, acetate and succinate increased skeletal muscle mitochondrial respiration. When given as post-biotics, succinate or acetate treatment may improve oxidative metabolism during muscle hypertrophy.
Collapse
Affiliation(s)
- Ahmed Ismaeel
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Benjamin Burke
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Jensen Goh
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Tolulope P. Saliu
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Fatmah Albathi
- Department of Pharmacology and Nutritional Sciences, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Allison Owen
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic TrainingCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - John J. McCarthy
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Yuan Wen
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Division of Biomedical Informatics, Department of Internal Medicine, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
3
|
Leite G, Pimentel M, Barlow GM, Chang C, Hosseini A, Wang J, Parodi G, Sedighi R, Rezaie A, Mathur R. Age and the aging process significantly alter the small bowel microbiome. Cell Rep 2021; 36:109765. [PMID: 34592155 DOI: 10.1016/j.celrep.2021.109765] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
Gut microbial diversity decreases with aging, but existing studies have used stool samples, which do not represent the entire gut. We analyzed the duodenal microbiome in 251 subjects aged 18-35 (n = 32), 36-50 (n = 41), 51-65 (n = 96), and 66-80 (n = 82). Decreased duodenal microbial diversity in older subjects is associated with combinations of chronological age, number of concomitant diseases, and number of medications used, and also correlated with increasing coliform numbers (p < 0.0001). Relative abundance (RA) of phylum Proteobacteria increases in older subjects, with increased RA of family Enterobacteriaceae and coliform genera Escherichia and Klebsiella, and is associated with alterations in the RA of other duodenal microbial taxa and decreased microbial diversity. Increased RA of specific genera are associated with chronological age only (Escherichia, Lactobacillus, and Enterococcus), number of medications only (Klebsiella), or number of concomitant diseases only (Clostridium and Bilophila). These findings indicate the small intestinal microbiome changes significantly with age and the aging process.
Collapse
Affiliation(s)
- Gabriela Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Christine Chang
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ava Hosseini
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Jiajing Wang
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Rashin Sedighi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA; Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai, Los Angeles, CA, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai, Los Angeles, CA, USA.
| |
Collapse
|