1
|
Kalkan BM, Baykal AT, Cicek E, Acilan C. Comprehensive proteomics analysis reveals novel Nek2-regulated pathways and therapeutic targets in cancer. Biochem Biophys Res Commun 2024; 734:150779. [PMID: 39368370 DOI: 10.1016/j.bbrc.2024.150779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
The mitotic kinase Nek2, often overexpressed in various cancers, plays a pivotal role in key cellular processes like the cell cycle, proliferation, and drug resistance. As a result, targeting Nek2 has become an appealing strategy for cancer therapy. To gain a comprehensive understanding of the cellular changes associated with Nek2 activity modulation, we performed a global proteomics analysis using LC-MS/MS. Through bioinformatics tools, we identified molecular pathways that are differentially regulated in cancer cells with Nek2 overexpression or depletion. Of the 1815 proteins identified, 358 exceeded the 20 % significance threshold. By integrating LC-MS/MS data with cancer patient datasets, we observed a strong correlation between Nek2 expression and the levels of KIF20B and RRM1. Silencing Nek2 led to a significant reduction in KIF20B and RRM1 protein levels, and potential phosphorylation sites for these proteins by Nek2 were identified. In summary, our data suggests that KIF20B and RRM1 are promising therapeutic targets, either independently or alongside Nek2 inhibitors, to improve clinical outcomes. Further analyses are necessary to fully understand Nek2's interactions with these proteins and their clinical relevance.
Collapse
Affiliation(s)
- Batuhan Mert Kalkan
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, School of Medicine, Acibadem University, Istanbul, Turkey
| | - Enes Cicek
- Koç University, Graduate School of Health Sciences, Istanbul, Turkey
| | - Ceyda Acilan
- Koç University, Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey; Koç University, School of Medicine, Istanbul, Turkey.
| |
Collapse
|
2
|
Tarannum M, Dinh K, Vergara J, Birch G, Abdulhamid YZ, Kaplan IE, Ay O, Maia A, Beaver O, Sheffer M, Shapiro R, Ali AK, Dong H, Ham JD, Bobilev E, James S, Cameron AB, Nguyen QD, Ganapathy S, Chayawatto C, Koreth J, Paweletz CP, Gokhale PC, Barbie DA, Matulonis UA, Soiffer RJ, Ritz J, Porter RL, Chen J, Romee R. CAR memory-like NK cells targeting the membrane proximal domain of mesothelin demonstrate promising activity in ovarian cancer. SCIENCE ADVANCES 2024; 10:eadn0881. [PMID: 38996027 PMCID: PMC11244547 DOI: 10.1126/sciadv.adn0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/10/2024] [Indexed: 07/14/2024]
Abstract
Epithelial ovarian cancer (EOC) remains one of the most lethal gynecological cancers. Cytokine-induced memory-like (CIML) natural killer (NK) cells have shown promising results in preclinical and early-phase clinical trials. In the current study, CIML NK cells demonstrated superior antitumor responses against a panel of EOC cell lines, increased expression of activation receptors, and up-regulation of genes involved in cell cycle/proliferation and down-regulation of inhibitory/suppressive genes. CIML NK cells transduced with a chimeric antigen receptor (CAR) targeting the membrane-proximal domain of mesothelin (MSLN) further improved the antitumor responses against MSLN-expressing EOC cells and patient-derived xenograft tumor cells. CAR arming of the CIML NK cells subtanstially reduced their dysfunction in patient-derived ascites fluid with transcriptomic changes related to altered metabolism and tonic signaling as potential mechanisms. Lastly, the adoptive transfer of MSLN-CAR CIML NK cells demonstrated remarkable inhibition of tumor growth and prevented metastatic spread in xenograft mice, supporting their potential as an effective therapeutic strategy in EOC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Carcinoma, Ovarian Epithelial/metabolism
- Carcinoma, Ovarian Epithelial/pathology
- Carcinoma, Ovarian Epithelial/immunology
- Carcinoma, Ovarian Epithelial/therapy
- Cell Line, Tumor
- GPI-Linked Proteins/metabolism
- GPI-Linked Proteins/genetics
- Immunologic Memory
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Mesothelin
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/therapy
- Protein Domains
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Mubin Tarannum
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Khanhlinh Dinh
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Juliana Vergara
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Grace Birch
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yasmin Z. Abdulhamid
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Isabel E. Kaplan
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Oyku Ay
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andreia Maia
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Owen Beaver
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michal Sheffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Roman Shapiro
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alaa Kassim Ali
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Han Dong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - James Dongjoo Ham
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eden Bobilev
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sydney James
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Amy B. Cameron
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Suthakar Ganapathy
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Chayapatou Chayawatto
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John Koreth
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cloud P. Paweletz
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Prafulla C. Gokhale
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - David A. Barbie
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Division of Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ursula A. Matulonis
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J. Soiffer
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jerome Ritz
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Rebecca L. Porter
- Division of Gynecologic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rizwan Romee
- Division of Transplantation and Cellular Therapies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Zhu L, Wang J. Quantifying Landscape-Flux via Single-Cell Transcriptomics Uncovers the Underlying Mechanism of Cell Cycle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308879. [PMID: 38353329 DOI: 10.1002/advs.202308879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Recent developments in single-cell sequencing technology enable the acquisition of entire transcriptome data. Understanding the underlying mechanism and identifying the driving force of transcriptional regulation governing cell function directly from these data remains challenging. This study reconstructs a continuous vector field of the cell cycle based on discrete single-cell RNA velocity to quantify the single-cell global nonequilibrium dynamic landscape-flux. It reveals that large fluctuations disrupt the global landscape and genetic perturbations alter landscape-flux, thus identifying key genes in maintaining cell cycle dynamics and predicting associated functional effects. Additionally, it quantifies the fundamental energy cost of the cell cycle initiation and unveils that sustaining the cell cycle requires curl flux and dissipation to maintain the oscillatory phase coherence. This study enables the inference of the cell cycle gene regulatory networks directly from the single-cell transcriptomic data, including the feedback mechanisms and interaction intensity. This provides a golden opportunity to experimentally verify the landscape-flux theory and also obtain its associated quantifications. It also offers a unique framework for combining the landscape-flux theory and single-cell high-through sequencing experiments for understanding the underlying mechanisms of the cell cycle and can be extended to other nonequilibrium biological processes, such as differentiation development and disease pathogenesis.
Collapse
Affiliation(s)
- Ligang Zhu
- College of Physics, Jilin University, Changchun, 130021, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Jin Wang
- Center for Theoretical Interdisciplinary Sciences, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
- Department of Chemistry, Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
4
|
Yang YH, Wei YL, She ZY. Kinesin-7 CENP-E in tumorigenesis: Chromosome instability, spindle assembly checkpoint, and applications. Front Mol Biosci 2024; 11:1366113. [PMID: 38560520 PMCID: PMC10978661 DOI: 10.3389/fmolb.2024.1366113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Kinesin motors are a large family of molecular motors that walk along microtubules to fulfill many roles in intracellular transport, microtubule organization, and chromosome alignment. Kinesin-7 CENP-E (Centromere protein E) is a chromosome scaffold-associated protein that is located in the corona layer of centromeres, which participates in kinetochore-microtubule attachment, chromosome alignment, and spindle assembly checkpoint. Over the past 3 decades, CENP-E has attracted great interest as a promising new mitotic target for cancer therapy and drug development. In this review, we describe expression patterns of CENP-E in multiple tumors and highlight the functions of CENP-E in cancer cell proliferation. We summarize recent advances in structural domains, roles, and functions of CENP-E in cell division. Notably, we describe the dual functions of CENP-E in inhibiting and promoting tumorigenesis. We summarize the mechanisms by which CENP-E affects tumorigenesis through chromosome instability and spindle assembly checkpoints. Finally, we overview and summarize the CENP-E-specific inhibitors, mechanisms of drug resistances and their applications.
Collapse
Affiliation(s)
- Yu-Hao Yang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| | - Ya-Lan Wei
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, China
- College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, China
| |
Collapse
|
5
|
Cmentowski V, Ciossani G, d'Amico E, Wohlgemuth S, Owa M, Dynlacht B, Musacchio A. RZZ-Spindly and CENP-E form an integrated platform to recruit dynein to the kinetochore corona. EMBO J 2023; 42:e114838. [PMID: 37984321 PMCID: PMC10711656 DOI: 10.15252/embj.2023114838] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023] Open
Abstract
Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin-7) and dynein-dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we show that when corona assembly is prevented through MPS1 inhibition, CENP-E is absolutely required to retain RZZS at kinetochores. An RZZS phosphomimetic mutant bypasses this requirement, demonstrating the existence of a second receptor for polymeric RZZS. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.
Collapse
Affiliation(s)
- Verena Cmentowski
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Centre for Medical Biotechnology, Faculty of BiologyUniversity Duisburg‐EssenEssenGermany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Present address:
European Institute of OncologyMilanItaly
| | - Ennio d'Amico
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Present address:
Division of Structural StudiesMRC Laboratory of Molecular BiologyCambridgeUK
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Mikito Owa
- Department of PathologyNew York University Cancer Institute, New York University School of MedicineNew YorkNYUSA
| | - Brian Dynlacht
- Department of PathologyNew York University Cancer Institute, New York University School of MedicineNew YorkNYUSA
| | - Andrea Musacchio
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
- Centre for Medical Biotechnology, Faculty of BiologyUniversity Duisburg‐EssenEssenGermany
| |
Collapse
|
6
|
Fang H, Zhang Y, Lin C, Sun Z, Wen W, Sheng H, Lin J. Primary microcephaly gene CENPE is a novel biomarker and potential therapeutic target for non-WNT/non-SHH medulloblastoma. Front Immunol 2023; 14:1227143. [PMID: 37593739 PMCID: PMC10427915 DOI: 10.3389/fimmu.2023.1227143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Background Non-WNT/non-SHH medulloblastoma (MB) is one of the subtypes with the highest genetic heterogeneity in MB, and its current treatment strategies have unsatisfactory results and significant side effects. As a member of the centromere protein (CENP) family, centromeric protein E (CENPE) is a microtubule plus-end-directed kinetochore protein. Heterozygous mutations in CENPE can leads to primary microcephaly syndrome. It has been reported that CENPE is upregulated in MB, but its role in MB development is still unknown. Methods We downloaded the relevant RNA seq data and matched clinical information from the GEO database. Bioinformatics analysis includes differential gene expression analysis, Kaplan-Meier survival analysis, nomogram analysis, ROC curve analysis, immune cell infiltration analysis, and gene function enrichment analysis. Moreover, the effects of CENPE expression on cell proliferation, cell cycle, and p53 signaling pathway of non-WNT/non-SHH MB were validated using CENPE specific siRNA in vitro experiments. Results Compared with normal tissues, CENPE was highly expressed in MB tissues and served as an independent prognostic factor for survival in non-WNT/non-SHH MB patients. The nomogram analysis and ROC curve further confirmed these findings. At the same time, immune cell infiltration analysis showed that CENPE may participate in the immune response and tumor microenvironment (TME) of non-WNT/non-SHH MB. In addition, gene enrichment analysis showed that CENPE was closely related to the cell cycle and p53 pathway in non-WNT/non-SHH MB. In vitro experimental validation showed that knockdown of CENPE inhibited cell proliferation by activating the p53 signaling pathway and blocking the cell cycle. Conclusion The expression of CENPE in non-WNT/non-SHH MB was positively correlated with poor prognosis. CENPE may affect tumor progression by regulating cell cycle, p53 pathway, and immune infiltration. Hence, CENPE is highly likely a novel biomarker and potential therapeutic target for non-WNT/non-SHH MB.
Collapse
Affiliation(s)
- Huangyi Fang
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Wenzhou Medical University, Wenzhou, China
- Department of Surgery, The First People’s Hospital of Jiashan, Jiaxing, China
| | | | - Zhenkai Sun
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wen
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Cmentowski V, Ciossani G, d’Amico E, Wohlgemuth S, Owa M, Dynlacht B, Musacchio A. A mechanism that integrates microtubule motors of opposite polarity at the kinetochore corona. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538277. [PMID: 37163019 PMCID: PMC10168246 DOI: 10.1101/2023.04.25.538277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chromosome biorientation on the mitotic spindle is prerequisite to errorless genome inheritance. CENP-E (kinesin 7) and Dynein-Dynactin (DD), microtubule motors with opposite polarity, promote biorientation from the kinetochore corona, a polymeric structure whose assembly requires MPS1 kinase. The corona's building block consists of ROD, Zwilch, ZW10, and the DD adaptor Spindly (RZZS). How CENP-E and DD are scaffolded and mutually coordinated in the corona remains unclear. Here, we report near-complete depletion of RZZS and DD from kinetochores after depletion of CENP-E and the outer kinetochore protein KNL1. With inhibited MPS1, CENP-E, which we show binds directly to RZZS, is required to retain kinetochore RZZS. An RZZS phosphomimetic mutant bypasses this requirement. With active MPS1, CENP-E is dispensable for corona expansion, but strictly required for physiological kinetochore accumulation of DD. Thus, we identify the corona as an integrated scaffold where CENP-E kinesin controls DD kinetochore loading for coordinated bidirectional transport of chromosome cargo.
Collapse
Affiliation(s)
- Verena Cmentowski
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Ennio d’Amico
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Mikito Owa
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Brian Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
She ZY, Xu MF, Jiang SY, Wei YL. Kinesin-7 CENP-E is essential for chromosome alignment and spindle assembly of mouse spermatocytes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119306. [PMID: 35680098 DOI: 10.1016/j.bbamcr.2022.119306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Genome stability depends on chromosome congression and alignment during cell division. Kinesin-7 CENP-E is critical for kinetochore-microtubule attachment and chromosome alignment, which contribute to genome stability in mitosis. However, the functions and mechanisms of CENP-E in the meiotic division of male spermatocytes remain largely unknown. In this study, by combining the use of chemical inhibitors, siRNA-mediated gene knockdown, immunohistochemistry, and high-resolution microscopy, we have found that CENP-E inhibition results in chromosome misalignment and metaphase arrest in dividing spermatocyte during meiosis. Strikingly, we have revealed that CENP-E regulates spindle organization in metaphase I spermatocytes and cultured GC-2 spd cells. CENP-E depletion leads to spindle elongation, chromosome misalignment, and chromosome instability in spermatocytes. Together, these findings indicate that CENP-E mediates the kinetochore recruitment of BubR1, spindle assembly checkpoint and chromosome alignment in dividing spermatocytes, which finally contribute to faithful chromosome segregation and chromosome stability in the male meiotic division.
Collapse
Affiliation(s)
- Zhen-Yu She
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China.
| | - Meng-Fei Xu
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China
| | - Sun-Ying Jiang
- Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, China; Key Laboratory of Stem Cell Engineering and Regenerative Medicine, Fujian Province University, Fuzhou, Fujian 350122, China
| | - Ya-Lan Wei
- Fujian Obstetrics and Gynecology Hospital, Fuzhou, Fujian 350011, China; Medical Research Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001, China
| |
Collapse
|
9
|
Post-translational modifications of tubulin: their role in cancers and the regulation of signaling molecules. Cancer Gene Ther 2021; 30:521-528. [PMID: 34671113 DOI: 10.1038/s41417-021-00396-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 11/09/2022]
Abstract
Microtubules play an important role in regulating several vital cellular activities, including cell division and tissue organization, through their dynamic protofilament network. In addition to forming the cytoskeleton, microtubules regulate the intracellular trafficking of cytoplasmic components and various signaling molecules, depending on the presence of post-transitional modifications (PTMs) and binding proteins. Accumulating evidence indicates the significant role of microtubule PTMs on cancer behavior. The PTMs that frequently occur on microtubules include acetylation, detyrosination, tyrosination, polyglutamylation, and polyglycylation. Alterations in these PTMs cause global effects on intracellular signal transduction, strongly linked to cancer pathogenesis. This review provides an update on the role of microtubule PTMs in cancer aggressiveness, particularly regarding cell death, sensitivity to chemotherapy, cell migration, and invasion. Additionally, it provides a mechanistic explanation of the molecular signaling pathways involved. This information might prove useful for predictive or therapeutic purposes.
Collapse
|
10
|
Iegiani G, Di Cunto F, Pallavicini G. Inhibiting microcephaly genes as alternative to microtubule targeting agents to treat brain tumors. Cell Death Dis 2021; 12:956. [PMID: 34663805 PMCID: PMC8523548 DOI: 10.1038/s41419-021-04259-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
Medulloblastoma (MB) and gliomas are the most frequent high-grade brain tumors (HGBT) in children and adulthood, respectively. The general treatment for these tumors consists in surgery, followed by radiotherapy and chemotherapy. Despite the improvement in patient survival, these therapies are only partially effective, and many patients still die. In the last decades, microtubules have emerged as interesting molecular targets for HGBT, as various microtubule targeting agents (MTAs) have been developed and tested pre-clinically and clinically with encouraging results. Nevertheless, these treatments produce relevant side effects since they target microtubules in normal as well as in cancerous cells. A possible strategy to overcome this toxicity could be to target proteins that control microtubule dynamics but are required by HGBT cells much more than in normal cell types. The genes mutated in primary hereditary microcephaly (MCPH) are ubiquitously expressed in proliferating cells, but under normal conditions are selectively required during brain development, in neural progenitors. There is evidence that MB and glioma cells share molecular profiles with progenitors of cerebellar granules and of cortical radial glia cells, in which MCPH gene functions are fundamental. Moreover, several studies indicate that MCPH genes are required for HGBT expansion. Among the 25 known MCPH genes, we focus this review on KNL1, ASPM, CENPE, CITK and KIF14, which have been found to control microtubule stability during cell division. We summarize the current knowledge about the molecular basis of their interaction with microtubules. Moreover, we will discuss data that suggest these genes are promising candidates as HGBT-specific targets.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy.
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy.
| |
Collapse
|
11
|
Cilluffo D, Chiavetta RF, Bivona S, Contino F, Coronnello C, Feo S, Di Leonardo A, Barra V. Transcriptomic Changes Following Partial Depletion of CENP-E in Normal Human Fibroblasts. Genes (Basel) 2021; 12:1322. [PMID: 34573304 PMCID: PMC8466516 DOI: 10.3390/genes12091322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore-microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore-microtubule capture and stable attachment, as well as congression of chromosomes to the metaphase plate. As the function of CENP-E is restricted to mitosis, its haploinsufficiency has been used to study the induced cell aneuploidy; however, the gene expression profile triggered by CENP-E reduction in normal cells has never been explored. To fill this gap, here we investigated whether a gene network exists that is associated with an siRNA-induced 50% reduction in CENP-E and consequent aneuploidy. Gene expression microarray analyses were performed at early and late timepoints after transfection. Initially, cell cycle regulation and stress response pathways were downregulated, while afterwards pathways involved in epithelial-mesenchymal transition, hypoxia and xenobiotic metabolism were altered. Collectively, our results suggest that CENP-E reduction triggers a gene expression program that recapitulates some features of tumor cells.
Collapse
Affiliation(s)
- Danilo Cilluffo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Institute for Innovation and Biomedical Research (IRIB), CNR, 90146 Palermo, Italy
| | - Roberta Flavia Chiavetta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
| | - Serena Bivona
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Advanced Technology Network Center (ATEN), University of Palermo, 90128 Palermo, Italy
| | - Flavia Contino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
| | | | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Advanced Technology Network Center (ATEN), University of Palermo, 90128 Palermo, Italy
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
- Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128 Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy; (D.C.); (R.F.C.); (S.B.); (F.C.); (S.F.)
| |
Collapse
|